اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق و بررسی در مورد انرژی هسته ای

اختصاصی از اس فایل تحقیق و بررسی در مورد انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق و بررسی در مورد انرژی هسته ای


تحقیق و بررسی در مورد انرژی هسته ای

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه

 9

برخی از فهرست مطالب

فهرست مطالب

عنوان                               صفحه

استخراج اورانیوم از معادن                    1

تبدیل اورانیوم                        1

کاربردهای انرژی هسته ای                  2

منابع و مأخذ                          5

استخراج

در فناوری هسته‌ای، خواه صلح آمیز باشد یا نظامی، ماده بنیادی مورد نیاز، اورانیوم است. اورانیوم از معادن زیرزمینی و همچنین حفاری‌های رو باز قابل استحصال است. این ماده به رغم آن که در تمام جهان قابل دستیابی است اما سنگ معدن تغلیظ شده آن به مقدار بسیار کمی قابل دستیابی است.

 

تبدیل اورانیوم

سنگ معدن اورانیوم استخراج شده در آسیاب خرد و ریز شده و به پودر بسیار ریزی تبدیل می‌شود. پس از آن طی فرآیند شیمیایی خاصی خالص سازی شده و به صورت یک حالت جامد به هم پیوسته که از آن به عنوان کیک زرد «YellowCake » یاد می‌شود، درمی آید. کیک زرد شامل 70 درصد اورانیوم بوده و دارای خواص پرتوزایی (Radioactive) است.

هدف پایه‌ای دانشمندان هسته‌ای از فرآیند غنی‌سازی افزایش میزان اتم های اورانیوم 235 است که برای این اه


دانلود با لینک مستقیم


تحقیق و بررسی در مورد انرژی هسته ای

تحقیق آشنایی با کاربردهای انرژی هسته ای

اختصاصی از اس فایل تحقیق آشنایی با کاربردهای انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق آشنایی با کاربردهای انرژی هسته ای


تحقیق آشنایی با کاربردهای انرژی هسته ای

فایل : word

قابل ویرایش و آماده چاپ

تعداد صفحه :31

آشنایی با بعضی از کاربردهای انرژی هسته ای                     

استفاده از انرژی هسته ای، یکی از اقتصادی ترین شیوه ها در دنیای صنعتی است و گستره عظیمی از کاربردهای مختلف، شامل تولید برق هسته ای، تشخیص و درمان بسیاری از بیماریها، کشاورزی و دامداری، کشف منابع آب و ... را در بر می گیرد.

انرژی هسته ای در مجموع، مانند یکی از انرژی های موجود در جهان مثل انرژی بادی، آبی، گاز و نفت و ... است، اما در مقایسه با آنها جزو انرژی های پایان ناپذیر شمرده می شود، که از نظر میزان تولید انرژی پاسخگوی نیازهای بشر خواهد بود. یعنی انرژی حاصل از تبدیل ماده به انرژی برابر است با جرم ماده ضرب در سرعت نور به توان 2 که نشان دهنده انرژی زیاد حاصل از تبدیل مقدار کمی ماده به انرژی است.


دانلود با لینک مستقیم


تحقیق آشنایی با کاربردهای انرژی هسته ای

تحقیق جامع و کامل درباره راکتورهای هسته ای

اختصاصی از اس فایل تحقیق جامع و کامل درباره راکتورهای هسته ای دانلود با لینک مستقیم و پر سرعت .

تحقیق جامع و کامل درباره راکتورهای هسته ای


تحقیق جامع و کامل درباره راکتورهای هسته ای

فرمت فایل : word  (لینک دانلود پایین صفحه) تعداد صفحات 76 صفحه

 

 

 

 

 

مقدمه:

برنامه استفاده از انرژی هسته‌ برای تولید برق در ایران در سال 1353 آغاز شد و پس از مشکلات ناشی از جنگ تحمیلی، لزوم بازنگری برنامه های قبلی و مسائل اقتصادی که کشور ما با آن روبرو است دوباره در صدر برنامه های دولت قرار گرفته است. از طرف دیگر استفاده از انرژی هسته ای در جهان و ساخت نیروگاههای هسته ای در 40 سال گذشته بطور پیوسته ادامه داشته و در حال حاضر 17% از انرژی برق در جهان از انرژی هسته ای تأمین می شود. کشورهای در حال توسعه، چه آنهایی که منبع انرژی دیگری در اختیار ندارند و چه کشورهایی که همراه با منابع دیگر می خواهند از این تکنولوژی جدید نیز برای تولید انرژی برق استفاده کنند، با مسائل خاصی مواجه هستند. کمبود سرمایه، فقدان نیروی انسانی کاردان، ضعف ارگان های تشکیلاتی و مقرراتی، عدم آمادگی صنایع محلی برای مشارکت و بالاخره موضوعات سیاسی در رابطه با انتقال دانش فنی و نظام منع گسترش سلاح هسته ای مهمترین موضوعات در رابطه با ساخت و بهره برداری از نیروگاههای هسته ای است.

پیش بینی مصرف برق، لزوم توسعة وسیع ظرفیت تولید موجود را نشان می دهد با توجه به اهمیت ذخیرة انرژی و بهبود بازدهی استفاده از آن، انرژی هسته ای به عنوان گزینه ای اجتناب ناپذیر با نقشی مهم در برآوردن نیاز آیندة انرژی برق در جهان تجلی می کند.

نیازهای فزایندة جهان به انرژی همراه با مسایل محیطی ناشی از گسترش روزافزون باکارگیری منابع سوخت فسیلی و نیز کاهش سریع این منابع، عواملی هستند که احتمالاً خط مشی های آتی انرژی در کشورهای عضو آژانس را تحت تأثیر قرار خواهند داد.

در منابع انگلیسی زبان بخصوص آمریکایی عبارت nuclear power یا قدرت هسته‌ای بجای انرژی هسته ای بکار می رود. چون معنای واقعی این عبارت انرژی هسته ای است و در ایران نیز رایج تر است، در این جا عبارت nuclear power به عبارت انرژی هسته ای بکار می رود.

 

بخش اول : فیزیک اتمی و هسته ای

- واکنشهای هسته ای، پرتوزایی و ...

این نوشته ها و اطلاعات پیرامون نظریه و نحوة کار رآکتورهای هسته می باشند.       

اتم و هسته:

اتمهای تمام عناصر که زمانی که تصور می شد ذرات بنیادی طبیعت باشند، متشکل از سه ذره بنیادی ترپروتون، نوترون، و الکترون اند. آرایش این ذرات در درون اتم، به ویژه تعداد پروتون ها و الکترون ها، ماهیت شیمیایی عنصر را تعیین می کند. اتم از هسته ای تشکیل شده است، که تمام پروتون های با بار مثبت و نوترون های بدون بار در آن گرد هم آمده اند، و تعدادی الکترون با بار منفی، در مدارهایی حول آن می‌چرخند.

ایزوتوپ ها:

اتمهایی که دارای عدد اتمی، Z، یکسان ولی عدد نوترونی متفاوت N می باشند، ایزوتوپ های عنصر با عدد اتمی z، نامیده می شوند، تمام عناصر دارای تعدادی ایزوتوپ هستند، و در مواردی این تعداد به 20، یا بیشتر می رسد. عناصر طبیعی هر کدام دارای یک یا چند ایزوتوپ پایدار هستند که به طور طبیعی یافت می شوند و سایر ایزوتوپ ها که پرتوزا یا ناپایدار هستند را می توان به روشهای مصنوعی تولید کرد.

خواص شیمیایی ایزوتوپ های مختلف یک عنصر شبه هم است، که عجیب هم نیست زیرا پیوندهای شیمیایی بین الکترون ها برقرار اند.

به عنوان مثال علامت  ایزوتوپی از اکسیژن را نشان می دهد که هستة آن دارای 8 پروتون و 8 نوترون است. هستةآن دارای 8 پروتون و 8 نوترون است. هستة ایزوتوپ  دارای 8 پروتون و 9 نوترون است.

هیدروژن عنصر مهمی در مهندسی هسته ای است. هیدروژن طبیعی متشکل از دو ایزوتوپ، 985 و 99 درصد  و 015/0 درصد ، موسوم به هیدروژن سنگین یا دو تریم، است. ایزوتوپ سومی از هیدروژن به نام تریتیم هم وجود دارد که پرتوزاست.

واکنشهای هسته ای:

تعداد واکنشهای هسته ای ممکن بسیار زیاد است، اما فقط تعداد کمی از آنها مورد توجه ما هستند. این واکنشها توسط بر هم کنش ذرات سبک از قبیل نوترون ها، پروتون ها یا دوترون ها (هسته های دوتریم)، یا تابش گاما با هسته های اتمی پدید می آیند به عنون مثال، می توان واکنشی را در نظر گرفت که در مهندسی هسته از اهمیت زیادی برخوردار است و از بر هم کنش بین نوترون های انرژی- پایین و بور 10 نتیجه می شود:

 

چهار قانون بنیادی بر کلیة واکنشهای هسته ای حاکم است:

1- بقای نوکلئون ها. تعداد کل نوکلئون ها قبل و بعد از واکنش ثابت است.

2- بقای بار الکتریکی، حاصل جمع بارهای کل ذرات قبل و بعد از واکنش یکسان است.

3- بقای تکانة خطی، چون در حین انجام واکنش هیچ نیروی خارجی اعمال نمی‌شود، تکانة ذرات قبل و بعد از واکنش ثابت است.

4- بقای جرم و انرژی، اصل انیشتین نافذ است، و هر اتلاف جرمی در طی واکنش توأم با آزاد شدن انرژی است، یا بالعکس. حاصل جمع جرم و انرژی قبل و بعد از واکنش ثابت است.

 

واکنش زنجیره ای و اصول رآکتورهای هسته ای:

دستیابی به دستگاهی که در آن یک واکنش کنترل شده و خود نگهدار شکافت زنجیره‌ای رخ بدهد، اولین شرط است، زیرا از این راه است که انرژی شکافت به صورت کنترل شده آزاد و مصرف می شود. دستگاهی که در آن واکنش زنجیره ای رخ می دهد رآکتور هسته ای نامیده می شود و بسته به نوع مواد ساختمانی آن و انرژی نوترون هایی که باهث شکافت می شوند، رآکتورها به انواع مختلفی تقسیم می شوند. بعضی راکتورهای هسته ای برای حصول به واکنش زنجیره ای نیازمند اورانیم سختی شده هستند، از این رو فرآیند های غنی سازی را به اختصار توضیح خواهم داد:

کار بست بهینة منابع اورانیوم جهان برای تولید انرژی، یکی از جنبه های مهم نیروی هسته ای است، و بررسی این موضوع، به تشریح انواع راکتورها و چرخه های سوخت، که باعث خواهند شد نه تنها اورانیوم، بلکه توریسم نیز به عنوان یک منبع انرژی طولانی مدت مورد استفاده قرار بگیرد، منجر خواهد شد.

 

واکنش زنجیره ای:

شرط لازم برای یک واکنش زنجیره ای پایدار و خود نگهدار آن است که دقیقاً یکی از نوترون های تولید شده در یک شکافت، منجر به وقوع شکافت دوم، و یکی از نوترون‌های این نسل، منجر به شکافت سوم، و الا آخر، شود. در چنین واکنشی، چگالی نوترون و آهنگ شکافت ثابت باقی می مانند. این شرط را می توان با ضریب تکثیر، K، که به صورت نسبت تعداد نوترون ها در یک نسل به تعداد نوترون های نسل پیش از آن تعریف می شود، بیان کرد.

وقتی این ضریب دقیقاً برابر 1 باشد، شرط واکنش زنجیره ای پایدار برقرار است و اصطلاحاً گفته می شود رآکتور «بحرانی» است. اگر این ضریب بزرگتر از 1 شود، رآکتور «فوق بحرانی» است و یک واکنش زنجره ای واگرا وجود دارد که طی آن چگالی نوترون و آهنگ شکافت، احتمالاً با یک آهنگ انفجاری نظیر آنچه در بمب اتمی رخ می دهد، زیاد می شوند. اگر ضریب تکثیر کوچکتر از 1 باشد، رآکتور «زیر بحرانی» است و واکنش زنجیره ای کاهش یافته و نهایتاً از بین می رود. رآکتور هسته ای، مجموعه ای است از مؤلفه های بسیاری که، در این مرحله، باید به چند مورد از مهم ترین آنها اشاره کنیم. مهم ترین قسمت هر رآکتور، سوخت است که شکافت در آن رخ می دهد و انرژی، به شکل حرارت، آزاد می شود. در حال حاضر اورانیوم بیشترین کاربرد را به عنوان سوخت هسته ای دارد. اما اهمیت ایزوتوپ  هم رو به افزایش است.

و بالاخره، غلافهای سوخت برای حصر و نگهداری سوخت و جلوگیری از رها شدن فراورده های پرتوزای شکافت مورد نیاز هستند. همچنین در تمام رآکتورها، جز آنهایی که در توان خیلی پایین کار می کنند، خنک کننده ای لازم است که با حرکت چرخشی و گذر از قلب رآکتور، حرارت آزاد شده در سوخت را به مبادله کن های گرمای خارجی منتقل می کند.

 

دسته بندی انواع رآکتورها:

انواع مختلف رآکتورهایی را که تا کنون در جهان ساخته شده اند می توان خلاصه کرد و آنها را بر حسب نوع سوخت و مواد ساختاری دیگر، از جمله کند کنندة، آنها دسته‌بندی نمود. سوخت اورانیوم را به شکلهای مختلفی می توان در رآکتور بکار برد. یک امکان، اورانیوم خالص است که فلزی چگال شناختی می شود، و این بیشترین دمای کار برای اورانیوم فلزی به منظور حذف امکان تغییر شکل ناشی از تغییر فاز است. راه بدیل و خیلی متداول تر کاربرد اورانیوم، استفاده از اکسید اورانیوم (uo) است، که پودری است که می توان آن را به صورت ساچمه هایی در آورد و در لوله هایی از جنس فولاد زنگ نزن یا آلیاژ زیر کو نیم انباشت و به شکل میله های سوخت در آورد. اکسید اورانیوم دارای نقطة ذوب بالایی، حدود ، است و رآکتورهایی که این نوع سوخت را مصرف می کنند می توانند در دماهای سوخت بالاتری نسبت به رآکتورهایی که اورانیوم فلزی مصرف می کنند کار کنند.

 

چرخة نوترون در رآکتورهای حرارتی:

در محاسبات دقیق ضریب تکثیر هر رآکتور با تمام رویدادهای مربوط به نوترون ها بتن زمان تولید آنها در شکافت و زمان ناپدید شدن آنها، خواه به صورت جذب و خواه به صورت فرار از رآکتور، کاملاً به حساب آینده اگر بخشهای مختلف عمر یک نوترون را جداگانه بررسی کنیم این کار ساده تر می شود، و ما این روش را بر یک رآکتر حرارتی با ابعاد متناهی که با اورانیوم می شود، و ما این روش را بر یک رآکتور حرارتی با ابعاد متناهی که با اورانیوم طبیعی یا غنی شده تغذیه می شود اعمال می کیم. که بدین شکل نشان داده شده است.

   انواع اصلی رآکتورهای هسته ای



 فرض کنید در اثر شکافت حرارتی
 ، n نوترون با انرژی متوسط 2mev به وجود آیند پیش از اینکه این نوترون ها به انرژیهای زیر Mev 1 کند بشوند، احتمال دارد که چندتایی از آنها باعث شکافت در  شوند، که این شکافتها را شکافت سریع می نامیم. ضریب شکافت سریع، 4 را به صورت زیر تعریف تعداد نوترون هایی که به ازای هر نوترون حاصل از شکافت حرارتی به زیر mev1 می رسند. اکنون، 4n نوترون به زیر mev1 می رسند و کند شدن آنها، عمدتاً در اثر برخوردهای پراکندگی با کند کننده. ادامه می یابد. در خلال فرآیند کند شدن، بعضی نوترون ها به خارج از رآکتور نشت می کنند، و بعضی در تشدیدهای  گیر می افتند.

 


بخش دوم : اصول فیزیکی ساختمان رآکتورهای هسته ای

منظور از نیروگاه، چه نیروگاه هسته ای، چه نیروگاه با سوخت فسیلی (نفت یا زغال‌سنگ) مرکزی است برای تولید برق، پیش از آنکه مطالعه تفضیلی خود را درباره نیروگاه هسته ای آغاز کنیم مروری بر چگونگی تولید برق و وجوه مشابه و متفاوت نیروگاههای هسته ای و سوخت فسیلی خواهیم کرد. این مرور ما را با اجزای اصلی نیروگه هسته ای آشنا خواهد کرد.

 

تولید برق:

هدف از ایجاد نیروگاه هسته ای، مانند هر مرکز مولد برق دیگر تولید برق است. تولید برق کار مشکلی به نظر نمی رسد.

هر یک از ما احتمالاً تکمة فلاش عکاسی یا استارت یک اتومبیل را زده است. در هر دوی اینها از انرژی الکتریکی ذخیره شده در یک باتری در موقع لزوم استفاده می شود. ولی یک دستگاه مولد برق را نمی توان از تعداد زیادی باتری متصل به هم تشکیل داد. دو دلیل بسیار مهم وجود دارد که چرا این کار نمی تواند صورت پذیرد:

نخست اینکه باتری ها مقدار انرژی الکتریکی محدودی دارند و نمی توانند بدون آنکه مرتب پر شوند مدت طولانی دوام داشته باشند. علاوه بر این برای پر کردن آنها نیاز به منبع انرژی الکتریکی دیگری است. دوم اینکه باتریها نمی توانند انرژی الکتریکی به مقدار زیاد در زمان کوتاهی تهیه کنند.

اگر باتری نمی تواند منظور یک مرکز تولید برق را برآورده سازد، پس چه چیز می‌تواند، مردم سالهای متمادی است حرکت مکانیکی را برای تولید برق مورد نیاز خود بکار می برند. می دانید اساس کار یک دستگاه مولد برق (ژنراتور) اعم از مولد جریان مستقیم یا متناوب، حرکت نسبی یک هادی در میدان مغناطیسی است. ولی مولد یک عیب دارد و آن این است که مانند باتری نمی توانند انرژی الکتریکی ذخیره کند، به عبارت دیگر برقی که مولد تولید می کند باید در حین تولید مصرف شود. در همه مولدها یک چیز مشترک است: همةْ آنها میاز به منبع قدرت دارند تا استوانة حامل هادیها را، یا آهنربای مولد میدان مغناطیسی را بچرخاند یعنی حرکت مورد استفاده انواع مختلف دارند. چهار نوع از آنها که اغلب مورد استفاده قرار می گیرند عبارتند از توربین آبی، توربین بخار، توربین گازی، و موتورهای درون ساز (که سوخت آنها مواد نفتی است) در نیروگاههای هیدروالکتریک برای چرخاندن مولد برق (ژنراتور) از توربین آبی استفاده می شود استفاده از توربین گازی برای بکار انداختن مولدهای برق روزافون است. اساس کار توربین های گازی مانند کار موتورهای جت است، سوخت می سوزد و گازهای حاصل از سوختن در توربین منبسط می شود.


 

 
 چرخة نوترون در راکتور حرارتی




  طرح ساده یک توربین گازی

 

توربین بخار وسیله متداولتری برای تأمین توان مکانیکی جهت چرخاندن القاء کن مولد برق در نیروگاه است. تفاوت یک نیروگاه بخار با نیروگاه های دیگر در چگونگی تولید بخار است.

 

راکتورهای برق هسته ای:

راکتورهای هسته ای تجارتی عمدتاً راکتورهای حرارتی هستند- یعنی نوترون های سریع که در واکنش شکافت هسته آزاد شده اند در کند کننده سرعت خود را از دست می دهند تا به دمایی نزدیک به دمای کند کننده برسند. بنابراین نوترونها در تعادل حرارتی با کند کننده قرار دارند. نوتورنهای حرارتی در مقایسه با نوترونهای سریع، با احتمال بسیار بیشتری می توانند واکنش های شکافت بیشتری را القاء کنند، بنابراین این امکان استفاده از سوخت طبیعی یا شاید سوختهایی که تا حدود بسیار کمی غنی شده اند، فراهم می سازد.

این امر با طراحی راکتورهای سریع که در آن واکنش زنجیره ای با نوترونهای سریع ادامه می یابد، در تضاد است. بنابراین، نیازی به کند کننده نیست اما سوخت مورد استفاده باید دارای نسبت بالایی از مواد شکننده، معمولاً پلوتونیم باشد.

 

راکتور آب سبک: (LWR):

آب سبک،  یک کندکننده قوی است و به سرعت نوترونهای سریعی را که با شکافت سوخت  آزاد شده اند حرارتی می کند. متأسفانه آب سبک بعنوان کند کننده سطح مقطع جذب نوترون نسبتاً بالایی دارد. بنابراین، برای کاهش مقدار نوترونی که از طریق جذب در کند کننده از بین می رود، طراحی قلب راکتور می بایستی به گونه‌ای باشد که به محض حرارتی شدن نوترون، از نفوذ و پراکندگی عمیق و طولانی آن جلوگیری شود. بنابراین قلب راکتور فشرده است و فاصله بین سوخت فقط در جد چند میلی متر است.

 

 

طرح راکتور و سیستم محافظ BWR

راکتور آب تحت فشار: (PWR)

PWR از برگزیدن راکتورهای هسته ای حرارتی در جهان ناشی می گردد.مشخصات اصلی این نوع طراحی عبارت است از چگالی فشرده و بالای توان قلب راکتور که به کمک آن آب با فشار بالا (تقریباً 158 بار) اما در دمای نسبتاً پایین پمپ شده و نقش دوگانه کند کنندگی/ خنک کنندگی را ایفا می کند. آب در مدار اولیه به حالت مایع حفظ می شود بجز در افزایش دهنده فشار که بالشتک بخار، امکان تنطیم فشار مدار را بر حسب نیاز با تغییر شرایط اشباع و بوسیله گرم کننده های الکتریکی یا آب فشانها فراهم می سازد.

سطوح داخلی مدار اولیه مستعد خوردگی با‌آب داغ با خلوص بالا است، و اجزای آن یا از فولاد ضد زنگ ساخته می شوند، یا با آن آستر می شوند یا در مورد مولدهای بخار، از آلیاژی با نیکل زیاد ساخته می شوند.

از شکل صفحه بعد می توان دید که طراحی از نوع سیکل غیر مستقیم است.

 
یک میله سوخت
PWR از  ساخته شده که اندکی غنی شده است (حدود 3 درصد). این سوخت به شکل قرصهای کلوخه شده درون لوله ای تحت فشار هلیم و از جنس زیر کالوی، با ابعاد تقریبی mm10 قطر و m5/3طول، کار گذاشته شده است. یک مجموعه سوخت، آرایه مربع شکلی است که بعنوان نمونه از  میله سوخت تشکیل شده است. در هر مجموعه، فاصله ها بوسیله تعدادی گرید در طول آرایه حفظ می شود. یک قلب PWR، توان (th) GW 5/3 نیاز به حدود 200 مجموعه سوخت، 100 تن ، دارد.


دانلود با لینک مستقیم


تحقیق جامع و کامل درباره راکتورهای هسته ای

دانلود تحقیق کامل درمورد اورانیوم و انرژی هسته ای

اختصاصی از اس فایل دانلود تحقیق کامل درمورد اورانیوم و انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد اورانیوم و انرژی هسته ای


دانلود تحقیق کامل درمورد اورانیوم و انرژی هسته ای

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 14

 

اورانیوم و انرژی هسته ای

نمونه ای سنگ معدنی اورانیوم

تعدادی از دوستان در نامه های ارسالی از ما خواسته اند که راجع به انرژی اتمی اطلاعاتی را تهیه کنیم.در اینجا ضمن تشکر از همکاری شما در جهت دادن به نوشته های فریا، طی چند نوشته با زبانی ساده به بررسی موضوعاتی که به تهیه انرژی از اورانیوم منتهی می شود، می پردازیم.

اورانیوم (Uranium) یکی از چگالترین فلزات رادیو اکتیو است که در طبیعت یافت می شود.این فلز در بسیاری از قسمتهای دنیا در صخره ها، خاک و حتی اعماق دریا و اقیانوس ها وجود دارد.اگر بخواهید از میزان موجودیت آن ایده ای بدست آورید باید بگوییم که میزان وجود و پراکندگی آن از طلا، نقر یا جیوه بسیار بیشتر است.


اورانیوم در طبیعت بصورت اکسید و یا نمک های مخلوط در مواد معدنی (مانند اورانیت یا کارونیت) یافت می شود.این نوع مواد اغلب از فوران آتشفشانها بوجود می آیند و نسبت وجود آنها در زمین چیزی معادل دو در میلیون نسبت به سایر سنگها و مواد کانی است.این فلز به رنگ سفید نقره ای است و کمی نرم تر از استیل بوده و تقریبآ قابل انعطاف است.


اورانیوم در سال 1789 توسط مارتین کلاپورت (Martin Klaproth) شیمی دان آلمانی از نوعی اورانیت بنام Pitchblende کشف شد.وجه تسمیه این فلز به کشف سیاره اورانوس بازمی گردد که هشت سال قبل از آن، ستاره شناسان آنرا کشف کرده بودند.

اورانیوم یکی از اصلی ترین منابع گرمایشی در مرکز زمین است و بیش از 40 سال است که بشر برای تولید انرژی از آن استفاده می کند.


دانشمندان معتقد هستند که اورانیوم بیش از 6.6 بیلیون سال پیش در اثر انفجار یک ستاره بزرگ بوجود آمده و در منظومه شمسی پراکنده شده است.


برای درک بهتر از توانایی اورانیوم در تولید انرژی لازم است نگاهی به ساختمان اتمی این فلز داشته باشیم.


اورانیوم را بهتر بشناسیم

اورانیم را درواقع می توان سنگین ترین (به بیان دقیقتر چگالترین) عنصر در طبیعت نامید.شاید بد نباشد بدانید که در این میان هیدروژن سبکترین عناصر طبیعت است.


اورانیوم خالص حدود 18.7 بار از آب چگالتر است و همانند بسیاری از دیگر مواد رادیو اکتیو در طبیعت بصورت ایزوتوپ یافت می شود.


بطور ساده ایزوتوپ حالت خاصی از حضور یک عنصر در طبیعت است که در هسته آن به تعداد مساوی - با عنصر اصلی - پروتون وجود دارد اما تعداد نوترون های آن متفاوت است.بنابراین طبق این تعریف ساده می توان دریافت که ایزوتوپ های یک عنصر عدد اتمی مشابه خود عنصر را خواهند داشت اما وزن اتمی متفاوتی دارند.


نمایی از یک رآکتور هسته ای

اورانیوم شانزده ایزوتوپ دارد که هریک از آنها دارای وزن اتمی خاصی هستند.حدود 99.3 درصد از اورانیومی که در طبیعت یافت می شود ایزوتوپ 238 (U-238) است و حدود 0.7 درصد ایزوتوپ 235 (U-235)، سایر ایزوتوپ ها بسیار نادر هستند.

در این میان ایزوتوپ 235 برای بدست آوردن انرژی از نوع 238 آن بسیار مهمتر است چرا که U-235 (با فراوانی تنها 0.7 درصد) آمادگی آنرا دارد که تحت شرایط خاص شکافته شده و مقادیر زیادی انرژی آزاد کند.به این ایزوتوپ Fissil Uranium، به معنای اروانیوم شکافتنی هم گفته می شود و برای این عملیات از اصطلاح شکافت هسته ای یا Nuclear Fission استفاده می شود.


اورانیوم نیز همانند سایر مواد رادیواکتیو دچار پوسیدگی و زوال می شود.مواد رادیو اکتیو دارای این خاصیت هستند که از خود بطور دائم ذرات آلفا و بتا و یا اشعه گاما منتشر می کنند.

U-238 باسرعت بسیار کمی فسیل می شود و نیمه عمر آن چیزی در حدود 4,500 میلون سال (تقریبآ معادل عمر زمین) است.


این موضوع به این معنی است که با فسیل شدن اورانیوم با همین سرعت کم انرژی معادل 0.1 وات برای هر یک تن اورانیوم تولید می شود و این برای گرم نگاه داشتن هسته زمین کافی است.


نگاه ساده به شکاف هسته ای اورانیوم

گفتیم که U-235 قابلیت شکاف هسته ای دارد.این نوع از اتم اورانیوم دارای 92 پروتون و 143 نوترون است (بنابراین جمعآ 235 ذره در هسته خود دارد و به همین دلیل U-235 نامیده می شود)، کافی است یک نوترون دریافت کند تا بتواند به دو اتم دیگر تبدیل شود.

این عمل با بمباران نوترونی هسته انجام می گیرد، در این حالت یک اتم U-235 به دو اتم دیگر تقسیم می شود و دو ، سه و یا بیشتر نوترون آزاد می شود.نوترون های آزاد شده خود با اتم های دیگر U-235 ترکیب می شوند و آنها را تقسیم کرده و به همین منوال یک واکنش زنجیره ای از تقسیم اتم های U-235 تشکیل می شود.


اتم U-235 با دریافت یک نوترون به اورانیوم 236 تبدیل می شود که ثبات و پایداری نداشته و تمایل دارد به دو اتم با ثبات تقسیم شود.انجام عمل تقسیم باعث آزاد شدن انرژی می شود بگونه ای که جمع انرژی حاصل از تقسیم زنجیره اتمهای U-235 بسیار قابل توجه می شود.


نمونه ای از این واکنش ها به اینصورت است :

U-235 + n ==> Ba-141 + Kr-92 + 3n + 170 Million electron Volts
U-235 + n ==> Te-139 + Zr-94 + 3n + 197 Million electron Volts

که در آن :

1 electron Volt = 1.602 x 10 -19 joules

(یک ژول انرژی معادل توان یک وات برای مصرف در یک ثانیه است.)


مجموع این عملیات ممکن است در محلی بنام رآکتور هسته ای انجام گیرد.رآکتور هسته ای می تواند انرژی آزاد شده را برای گرم کردن آب استفاده نماید تا در نهایت از آن برای راه اندازی توربین های بخار و تولید برق استفاده شود.

 

هدف اصلی یک رآکتور هسته ای آن است سوخت هسته ای (اورانیوم) را در سلسله واکنشهای زنجیره ای fission مهار کرده و انرژی حاصله از این واکنش ها را تبدیل به انرژی قابل استفاده نماید.

درواقع ساده ترین روش آن است که از گرمای حاصل از تبدیل اتم های اورانیوم 235، برای گرم کردن آب و به حرکت در آوردن توربین های بخار استفاده کرد تا بتوان بوسیله آن از ژنراتورهای الکتریکی نیروی برق گرفت.

یک نیروگاه برق هسته ای با یک نیروگاه برق که از سوخت فسیلی استفاده می کند در بسیاری از قسمت ها مشترک هستند.هر دو آنها به بخار آب برای بگردش در آوردن توربین بخار نیاز دارند و نیز به یک ژنراتور برق؛ تنها تفاوت آنها در این است که در نیروگاه هسته ای بجای سوخت فسیلی از واکنش های هسته ای برای تهیه بخار استفاده می شود.

واکنشهای هسته ای در قلب رآکتور صورت می گیرد و میزان انرژی تولید شده به میزان تحریک اتم های اورانیوم بستگی دارد.با کم و زیاد کردن مقدار نوترون های تزریق شده به سوخت هسته ای می توان مقدار اتمهای درگیر در پروسه fission را تنظیم کرده مقدار انرژی خروجی نیروگاه را کنترل کرد.


سوخت هسته ای توسط ماده ای که به Moderator (متعادل کننده) معروف است، احاطه می شود.این ماده باعث می شود تا سرعت انتشار نوترون به هنگام تبدیل اورانیوم به دو اتم دیگر کند شود.به بیان دیگر توسط آن می توان مانع انجام عملیات زنجیری تبدیل اتمهای اورانیوم به صورت یکباره شد.


در رآکتورهای مختلف با توجه به نوع تکنولوژی ساخت از آب، گرافیت، آب سنگین و ...به عنوان Moderator استفاده می شود.

آب سنگین نوع خاصی از آب است که در آن اتمهای هیدروژن تشکیل دهنده مولکولهای آب، بیشتر از نوع هیدروژن سنگین (deuterium) هستند.این ایزوتوپ هیدروژن با ثبات بوده و خواص شیمیایی مشابهی با هیدروژن معمولی دارد با این تفاوت که یک نوترون در هسته خود دارد در حالی که هیدروژن معمولی در هسته تنها یک پروتون دارد.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد اورانیوم و انرژی هسته ای

دانلود مقاله کامل درباره اقتصاد انرژی هسته ای

اختصاصی از اس فایل دانلود مقاله کامل درباره اقتصاد انرژی هسته ای دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره اقتصاد انرژی هسته ای


دانلود مقاله کامل درباره اقتصاد انرژی هسته ای

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 21

 

اقتصاد انرژی هسته ای

دغدغه اصلی جهان عادت کرده به مصرف انرژی، در دو دهه آینده، تولید انرژی و ساخت نیروگاه اتمی به عنوان تنها راه خروج از بحران انرژی در دهه های آینده است.

انرژی در جهان امروز یک عامل راهبردی است و اغلب کشورهای جهان به خصوص آنها که به دنبال اعمال اراده و قدرت خود بر دیگر کشورها می باشند از همین دریچه به مقوله انرژی می نگرند. همان طوری که این نگاه را می توانیم از زمان های گذشته یعنی دوران استعمار کهنه تا به امروز دنبال کنیم.
در این میان کشور ما ایران، علاوه بر اینکه دارای ذخایر ویژه و عمده ای از منابع انرژی بخصوص نفت و گاز می باشد، در منطقه ای از جهان واقع است که یکی از اصلی ترین منابع انرژی در سطح جهان به شمار می رود. بنابراین با توجه به اینکه مقوله انرژی برای کشورهای سلطه طلب، نقش موتور محرکه اقتصاد و تولید ملی و تعیین کننده جایگاه آنها در نظام سرمایه داری جهان را دارد و همچنین تضمین کننده منافع و امنیت ملی آنها است، برای کشور ما نیز چگونگی سامان دهی به سیاستهای بخش انرژی، نقش کلیدی در فرآیند تحولات سیاسی، اجتماعی و اقتصادی را داراست و لذا ضروری است که برای انرژی و بخصوص نفت و گاز و به دنبال اینها انرژی هسته ای، برنامه و استراتژی اندیشیده و متناسب با شرایط واقعی موجود داخلی و جهانی داشته باشیم.
نگرش استراتژیک دارای دو مشخصه میان رشته ای یا فرابخشی بودن (جامع بودن) و طولانی مدت بودن است، که در سایر نگرش ها اعم از نگرش اقتصادی و فنی صرف کمتر به آنها توجه می شود. در این نگرش منافع و مضرات بخش انرژی تنها در محدوده بخش مذکور مورد لحاظ قرار نمی گیرد بلکه در کل چارچوب نظام و با توجه به رعایت و حفظ امنیت ملی لحاظ می شود و منافع نظام اجتماعی را حداکثر و مضرات آن را به حداقل می رساند. البته باید توجه داشت که این نگرش لزوماً با نگرش های اقتصادی و فنی در تناقض نیست اما ممکن است سیاستهایی را بطلبد که از منظر اقتصادی صرف، غیراقتصادی انگاشته شود. در نگاه استراتژیک، بهینگی بلند مدت در سطح همه اجزاء نظام اجتماعی مورد توجه است، برعکس نگاه اقتصادی صرف که منافع کوتاه مدت و یک بعدی را در نظر می گیرد. این برنامه استراتژیک، باید از سویی با توجه به توانایی های واقعی همان بخش مورد نظر و از سوی دیگر در چارچوب استراتژیهای کلان کشور سامان پذیرد: یعنی در تعامل با سایر حوزه ها طراحی شود.
با توجه به مقدمه فوق باید اذعان داشت که دغدغه اصلی جهان عادت کرده به مصرف انرژی، در دو دهه آینده، تولید انرژی و ساخت نیروگاه اتمی به عنوان تنها راه خروج از بحران انرژی در دهه های آینده است. در این بین از آن جا که ساخت یک نیروگاه اتمی اغلب علوم و فنون را به کار می گیرد، این کاربری به مفهوم توسعه و پیشرفت در همه علوم و فنون است. از طرفی هم می توان ادعا کرد که نیروگاه برق اتمی، اقتصادی ترین نیروگاهی است که امروز در دنیا احداث می شود که دلایل آن در ادامه بحث خواهد آمد. دلایل دیگری هم برای استفاده از نیروگاه اتمی برای تولید برق وجود دارد که از مهم ترین آنها می توان به پاکیزه بودن این روش، عدم تولید گاز گلخانه ای و دیگر آلاینده های زیست محیطی اشاره کرد. سوخت های فسیلی مانند ذغال سنگ، مقدار قابل توجهی از انواع آلاینده ها همانند ترکیبات کربن و گوگرد را وارد محیط زیست می سازند که برای سلامت انسان زیانبار است. از سوی دیگر با توجه به افزایش مصرف برق و پایان پذیر بودن منابع سوخت فسیلی به نظر می رسد استفاده از انرژی هسته ای بهترین گزینه موجود باشد.
شاید هنوز افرادی هستند که ادعا می کنند با توجه به ذخایر نفت و گاز ایران، آیا ایران نیازی به انرژی هسته ای دارد یا خیر؟ پاسخ صحیح به این سؤال مستلزم مطالعه دقیق علمی است. این مطالعه به کمک یک سری نرم افزارهای خاص، هم در سازمان انرژی اتمی ایران و هم در دانشگاه صنعتی شریف انجام گرفته و این گونه نیست که براساس برداشت های عمومی و محدود گفته شود، مثلاً ما که این قدر گاز داریم چرا سراغ انرژی اتمی برویم؟ موضوع به این سادگی نیست، بلکه برای امکان سنجی و مطالعه همین موضوع تحت عنوان انرژی میکس یا ترکیب منابع انرژی نرم افزارهای بزرگ خاصی وجود دارد و این فرآیند تحت عنوان The merits of energy mix نام گذاری شده است؛ «یعنی فواید انرژی های ترکیبی». برهمین اساس هیچ کشوری سعی نمی کند از لحاظ استراتژیک، انرژی مورد نیازش را فقط از یک منبع تأمین کند، ولو آنکه در آن کشور به فراوانی یافت شود. مثلاً اگر در کشوری منابع آبی زیاد است، به این سمت نمی رود که انرژی برق خودش را فقط از آب تأمین کند، اما اینکه باید چه سهمی به انرژی میکس اختصاص داده شود نیاز به محاسباتی دارد که باید انجام شود. در ایران هم این محاسبات، سال های سال صورت گرفته و چیز جدیدی نیست. برای انجام این محاسبات باید پارامترهای متعددی در نظر گرفته شود که اکثر آنها متغیر است. مثلاً قیمت گاز طبیعی قیمتی متغیر است. و الان که نقش زیادی در سوخت جهانی ندارد، قیمت چندانی هم ندارد، اما گفته می شود در ۱۵ سال آینده، سهم قابل توجهی از سوخت را به خود اختصاص خواهد داد و مسلماً قیمت سوخت در آن شرایط با الان بسیار متفاوت خواهد بود؛ ضمن اینکه اگر همین الان این محاسبات انجام شود و ما تصمیم بگیریم مثلاً ۷۰۰۰ مگاوات برق از انرژی هسته ای تأمین کنیم، حتی اگر این کار به صورت فاینانس انجام شود دست کم ۱۲ سال طول خواهد کشید و این هم خود یک متغیر است. به هر حال یکی از سخت ترین کارها در پروژه های داخلی و خارجی همین بحث فاینانسینگ است. با ذکر چند پارامتر مؤثر در مورد ضرورت نیروگاه هسته ای از لحاظ اقتصادی می توان بحث را روشن تر نمود، البته همه پارامترها را باید به نرم افزار داد تا در مورد صرفه اقتصادی آن نظر بدهد.
نخستین درس در اقتصاد انرژی در مورد Energy mix این است که فرق بین انرژی هسته ای و انرژی های کلاسیک، در سرمایه گذاری اولیه بالا و هزینه های پایین راهبری و تعمیرات است. به عنوان مثال یک نیروگاه ۱۰۰۰ مگاواتی فسیلی؛ به۱۰ میلیون بشکه نفت یا معادل انرژی آن از سوخت های فسیلی دیگر مثل گاز در طول یک سال نیاز دارد. با در نظر گرفتن قیمت اوپک که بین ۲۲ دلار و ۲۸ دلار و خارج کردن هزینه های استخراج که حدود ۲ دلار است، قیمت پایه نفت حدوداً بشکه ای ۲۴ دلار خواهد شد وبرای یک نیروگاه ۱۰۰۰ مگاوات الکتریکی چیزی حدود۲۴۰ میلیون دلار در سال خواهد شد. در مورد گاز در حد ۲ میلیارد فوت مکعب در سال خواهد شد. البته گاز بحث دیگری است، چون قیمت آن بسیار متغیر است. چیزی که فعلاً می توان با اطمینان بیشتر در مورد آن صحبت کرد، نفت است که با در نظر گرفتن۲۴۰ میلیون دلار قیمت سوخت و۶۰ میلیون دلار هزینه تعمیرات و نگهداری، در مجموع حدوداً ۳۰۰ میلیون دلار هزینه راهبری یک نیروگاه فسیلی ۱۰۰۰ مگاواتی در سال می شود. در شرایط عادی هزینه ساخت یک نیروگاه فسیلی، بسیار پاپین خواهد بود؛ یعنی عددی بین ۴۰۰ تا ۷۰۰ میلیون دلار برای یک نیروگاه ۱۰۰۰ مگاواتی. اما اگر قیمت ترجیحی در نظر گرفته شود، هزینه از این هم کمتر خواهد شد. ولی در شرایط غیرعادی سیاسی با خارج، این هزینه افزایش می یابد. این مبلغ در ساخت نیروگاه هسته ای بسیار بالاتر است. هزینه نصب هر مگاوات آن حدود ۱۵۰۰ تا ۲۵۰۰ دلار است، چون هزینه هایی مانند برچیدن نیروگاه هم در نظر گرفته می شود و به اصطلاح قیمت سرشکن گفته می شود. یعنی در واقع هزینه ساخت یک نیروگاه هسته ای ۱۰۰۰ مگاواتی ۵/۱ تا ۵/۲ میلیارد دلار خواهد بود. اما سوخت هسته ای مورد نیاز یک نیروگاه هسته ای ۱۰۰۰ مگاواتی، حدوداً۳۰ تن اورانیوم غنی شده در سال است که هزینه آن در شرایط سیاسی و اقتصادی مناسب، ۱۰ میلیون دلار و در بدترین شرایط ۲۵ میلیون دلار می باشد. با توجه به محاسبات فوق، در بدبینانه ترین شرایط یعنی اگر قیمت نفت بشکه ای ۲۴ دلار فرض شود، هزینه سوخت مورد نیاز یک نیروگاه هسته ای، ۱۰ درصد هزینه سوخت یک نیروگاه فسیلی مشابه است که با احتساب ۵۰ سال عمر یک نیروگاه اتمی، تفاوت این هزینه به قیمت های امروز، بیش از۱۰ میلیارد دلار خواهد شد که اختلاف حدود یک و نیم میلیارد دلاری در هزینه ساخت آنها را کاملاً پوشش می دهد. بنابراین، این نظر که نیروگاههای هسته ای در مقایسه با نیروگاههای فسیلی توجیه اقتصادی ندارد، درست نیست. اما بحث دوم، به قرارداد کیوتو مربوط می شود، که متأسفانه آمریکایی ها زیر بار آن نرفته اند. این قرارداد مربوط به تولید گازهای گلخانه ای در جهان بوده که روال طبیعی جهان را از لحاظ زیست محیطی به هم ریخته است.
در همین شرایط ایران ۳۰ هزار مگاوات نیروگاه دارد و در ده سال آینده، احتمالاً به۶۰ هزار مگاوات خواهد رسید. بالا رفتن حجم تولید گازهای گلخانه ای، هزینه های اجتماعی خاصی را ایجاد می کند که بالطبع باید جلوی تولید گازهای گلخانه ای را در نیروگاههای فسیلی گرفت، یا به اصطلاح، هزینه زیادی را برای Scrape (۱) اختصاص داد. حداقل هزینه ای که پیش بینی می شود حدوداً ۲۵ درصد کل هزینه تمام شده برق تولیدی است، اما برق هسته ای این هزینه را ندارد و فقط زباله های اتمی در اثر آن تولید می شود. اگر سالی ۳۰ تن سوخت مصرف شود و۵۰ سال عمر برای نیروگاه در نظر گرفته شود، چیزی حدوداً ۱۵۰۰ تن زباله اتمی در عرض۵۰ سال تولید می شود که بعد از تفکیک و فشرده سازی آن، بیش از چند تن زباله باقی نخواهد ماند (البته با حجم کم). این زباله ها باید در جاهای خاص حفاظت شده قرار بگیرند تا محیط زیست را آلوده نکنند. مانند زیرزمین و جاهایی که آب از آن عبور نکند. بعضی کشورها مثل روسیه زباله های اتمی دیگران را می گیرند و آن را با هزینه نسبتاً پایین دفع می کنند. پس از لحاظ زیست محیطی هم نیروگاه هسته ای بر نیروگاه فسیلی اولویت اقتصادی خواهد داشت. اما موضوع سوم، جنبه تکنولوژیک قضیه است که بسیار مهم است. بشر به سمتی می رود که یک انرژی لایزال پیدا کند (حتی اورانیوم هم لایزال نیست). دنیا به فکر گداخت (Fusion) (۲) است، یعنی انرژی لایزال و پاک. ایران نیز از این قاعده مستثنی نیست. علم و تکنولوژی و فن آوری، مراحلی دارد که باید حتماً گذرانده شود. تکنولوژی و فن آوری هم به همین صورت است، پروسه ای است که باید گذرانده شود. دنیا به هر حال در آینده از شکافت- تولید انرژی با شکافت هسته ای- یعنی همین انرژی هسته ای پا را فراتر خواهد گذاشت و به دنبال گداخت- تولید انرژی با هم جوشی هسته ای- خواهد رفت. تکنولوژی گداخت ممکن است تا۳۰ سال دیگر صنعتی شود. اگر کشور ما با گداخت دست و پنجه نرم نکند و نیرو تربیت نکند و در یک کلام به بلوغ و فناوری و تکنولوژی این مرحله نرسد، نمی تواند از آن عبور کند و وقتی گداخت وارد عرصه صنعت می شود، باز دوباره جزو کشورهای عقب مانده خواهیم بود.
در حال حاضر روسیه ۸ میلیون بشکه نفت در روز تولید و حدود ۵ میلیون از آن را صادر می کند. ۳۰ نیروگاه هسته ای دارد و به سرعت هم به نیروگاههای خود اضافه می کند، در حالی که اولین کشور در ذخایر گازی است و جمعیت آن هم تنها کمی بیشتر از دو برابر ماست. فرض شود، تولید نفت روسیه با ایران برابر باشد، چرا با اینکه ذخایر گازی این کشور از ایران بیشتر است، باز به دنبال انرژی هسته ای است؟ مگر صرفه اقتصادی دارد؟ در مورد مکزیک چطور؟
در این شرایط آمریکا هم ۱۰۵ نیروگاه هسته ای دارد، لذا فقط معیارهای اقتصادی هم مطرح نیست و معیارهای مختلف فن آوری تأثیر گذار خواهد بود. در واقع تکنولوژی هسته ای، میعاد گاه تکنولوژی های دیگر است. مثل صنعت خودرو که اگر در یک کشور رونق خوبی داشته باشد، تقریباً بخش عمده ای از تکنولوژی را جلو می برد، چرا که بیشتر علوم و تکنولوژی ها مثل مکانیک، شیمی، مواد، برق و... در آن است. به همین صورت اگر صنعت هسته ای کشور هم رشد معنادار، واقعی و همه جانبه داشته باشد، با توجه به اینکه بالاترین محدودیت ها و استانداردهای مهندسی در آن وجود دارد، صنعت کشور در سطح بالایی رشد خواهد کرد.
صنعت غنی سازی هم عمر کمی ندارد و دست کم ۴۰ سال است که این کار شروع شده است. مثلاً سانتریفوژ حدوداً ۴۰ سال پیش توسط استادی به نام زیپر آلمانی طراحی شد. اما سانتریفوژ امروز با آن سانتریفوژ در حالی که اصول یکسانی دارند، تفاوت هایی هم دارند. حال اگر کشوری بتواند یک دستگاه سانتریفوژ بسازد، در واقع آن کشور در عرصه تکنولوژی یک گام جلو افتاده است. چون در غنی سازی اورانیوم جهت استفاده در راکتورهای هسته ای از علوم مختلف مهندسی، مکانیک، شیمی و... با نهایت دقت و قدرت استفاده می شود. به طور کلی تعریف جدید مهندسی براساس میزان دقت است و کشوری پیشرفته نامیده می شود که میزان خطای مهندسی آن کم باشد.
لذا برای رسیدن به استقلال واقعی، باید به سمت تولید فن آوری و علم رفت. البته این روند بالطبع هزینه دارد. همه جای دنیا هم، این گونه است. به هر حال هزینه رسیدن به تکنولوژی هسته ای با این همه عظمت، کار و فعالیت همه جانبه متخصصین ایرانی و استفاده از تجربه کشورهای دارنده این صنعت را طلب می کند.

 این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود مقاله کامل درباره اقتصاد انرژی هسته ای