اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه اصول طراحی و پیاده سازی و کاربرد(kemel_j). doc

اختصاصی از اس فایل پروژه اصول طراحی و پیاده سازی و کاربرد(kemel_j). doc دانلود با لینک مستقیم و پر سرعت .

پروژه اصول طراحی و پیاده سازی و کاربرد(kemel_j). doc


پروژه اصول طراحی و پیاده سازی و کاربرد(kemel_j). doc

 

 

 

 

نوع فایل: word

قابل ویرایش 118 صفحه

 

چکیده:

 زبان پایه سیستم های توسعه پذیر نوع امن همچون جاوا برای تهیه کردن حافظه امن در فضای آدرس واحد استفاده می شود حافظه امن به تنهایی برای حفاظت از کاربرد های مختلف از دیگر موارد کافی نیست. بیشتر سیستم ها باید یک مدل پردازش که قادر به کنترل و مدیریت منابع ایجاد شده باشد را پشتیبانی کنند. در زبان های مخصوص پایه توسعه پذیر سیستم ها ، باید مکانیزم کنترل منابع برای آنها در سیستم عامل استاندارد را پشتیبانی کنند .

 

کلمات کلیدی

J_kernel , kaffe os , Alta , GVM

 

مقدمه:

1-1- انتقال رمز

 عقیده انتقال رمز در طول شبکه به مناسبترین میزبان برای اجراء چیز عادی و پیش پا افتاده ای شده است . اکثراً رمز برای کارآیی و بازدهی انتقال داده می شود اما گاهی اوقات بخاطر شخصی بودن ، مقاومت در برابر خوابی ( روا داشت خطا ) یا فقط بخاطر آسایش و راحتی است . مسئله عمده در زمان انتقال دادن رمز ، ایمن سازی است ؛ تائید درستی میزبانی که رمز به آن منتقل می شوند و نیز تائید پردازش انجام شده بوسیله خود رمز انتقال یافته در خطر است . یک تعداد از تکنیک ها استفاده شده اند تا مرزهای حفاظت را میان رمز غیر قابل اعتماد منتقل شده به یک میزبان و باقیمانده نرم افزار اجرایی روی آن میزبان را قرار دهد . سیستم عاملهای قدیمی از حافظه مجازی استفاده میکنند تا حفاظت میان فرآروندها را تقویت کنند . یک فرآروند نمی تواند بطور مستقیم سایر حافظه فرآروندها را بخواند و بنویسد ، و ارتباط میان فرآروند غیر معتمد می تواند راه اندازی کند ، می تواند تا درجه های متنوعی از سایر فرآروندها در میزبان جدا شود . هرچند اشاره کمی در فرستادن یک رایانش به یک میزبان وجود دارد ، در صورتیکه نمی تواند با سایر رایانش ها بر هم کنش کند ، رایانش بین فرآروندی بایستی امکان پذیر باشد . مسائل عمده زمان استفاده از تسهیلات سیستم عامل قدیمی برای جدا کردن رمز غیر قابل اعتماد رخ می نمایند ، که تصمیم می گیرند آیا یک تله کرنل ویژه مجاز است یا نه و فائق آمدن از هزینه ارتباط بین فرآروند سطح معنایی تله های کرنل عموماً با سطحی که در آن سیاست های حفاظت مشخص می شوند مطابقت نمی کند . علاوه بر این موجوداتی که در آن تله ها عمل میکنند ، آنهایی هستند که بوسیله جی کرنل مدیریت می شوند و نه آنهایی که بوسیله مکانیسم های انتقال سریع فرآروندی شد ، هزینه عبوری از طریق کرنل و از فضا ها آدرس کلید زنی ، رتبه های مقدار بزرگتری از فراخوانی یک مرحله را دارند . در زمینه رمز سیار محافظت زبانی ، شیوه جالبی نسبت به مکانیسم های حفاظت سیستم عامل است . حفاظت زبانی تکیه بر ایمنی یک سیستم حرفی زبانی دارد که تضمین می کند چکیده سازیهای ارائه شده توسط حرف های زبان تقویت شده اند . یک سیستم حروف بعنوان یک مکانیسم کنترل دستیابی ساده عمل می کند ؛ این سیستم موجودهایی را محدود می سازد که یک رایانش می تواند دسترس پیدا کند ( هیچ راهی وجود ندارد تا یک اشاره گر را به یک شئی جعل کند ) و عملیاتی را محدود می سازد که رمز می تواند در موجودهای قابل دسترس عمل کند جاذبه حفاظت زبانی دو لایه است : دقت حفاظت و عملکرد ارتباط در طول مرزها ی حفاظت مکانیسم های حافظه مجازی سنتی مشخص شوند . عناصر داده ای که با آنها دستیابی ممکن میشوند و نیز انواع دستیابی های مجاز شده می توانند خیلی دقیق مشخص شوند . برای مثال ، در جاوا ، دستیابی را می توان به دقت با موجود های ( شن های )انفرادی و حتی فقط با فیلد های مقصد خاص با استفاده از توصیف گر عمومی مقرر کرد .

 علاوه بر این ، با حفاظت زبانی ، فراخوانی های تابع ساده باشند ، که ارتباط بیشتری میان اجزاء را مقدور می سازد ، همانطور که بدون نقطه ضعف ها و عیب های اجرایی مطلوب است . اما حفاظت زبانی به تنهایی یک سیستم عامل را ایجاد نمی کند . چندین پروژهاخیراً شرح داده اند که چگونه قلمروها حفاظت در اطراف اجزاء یک محیط زبانی ایمنی بسازند . ایده اصلی این است که از ارجاعات موجودی ( اسمی ) ( یعنی اشاره گرها به اشیاء ) بعنوان توانش هایی برای ارتباط قلمرویی متقابل استفاده کنیم . ارجاعات موجودی ( اسمی ) در زبانهای ایمن غیر قابل جعل هستند و از این رو می توان از آنها استفاده کرد تا حق امتیاز های خاصی را برای نگهدارنده ها اعطا کند . در یک زبان اسمی شیوه های عملی برای یک شئی در اصل دروازه های فراخوانی هستند .هر چند این شیوه در حالیکه هم انعطاف پذیر وهم سریع است ، از محدودیت برخوردار است : هیچ راهی برای باطل کردن دستیابی به ارجاعات اسمی وجود ندارد ، و هیچ راهی برای رد گیری اینکه کدام موجود ها را مالک می باشند وجود ندارد . این امر منجر به مشکلات مبرمی در مورد پایان دهی قلمرویی و حساب کردن منابع می شود .

 

فهرست مطالب:

فصل اول : مقدمه

 1-1 - انتقال رمز

 2-1- پردازش ها در kaffe os

 3-1- ارتباطات

 4-1- امنیت سیستم

فصل دوم : مفاهیم جی_کرنل

 1-2- جی کرنل

 2-2- تحقق و پیاده سازی

 3-2- میکرو افزار سنج های جی کرنل

 4-2- عایق بندی

فصل سوم : طراحی و پیاده سازی

 1-3- برنامه نویسی

 2-3- مدیریت منابع

 3-3- عایق سازی

 4-3- طراحی سرور وب بر اساس جی کرنل

 5-3- ساختار وب توسعه پذیر

6-3- کار مربوطه

فصل چهارم : مقایسه وارزیابی

 1-4- GVM 7

 2-4- Alta 80

 3-4- j-kernel85

4-4- ارزیابی و کار ایی

5-4- کار مربوطه

فصل پنجم : نتیجه گیری

منابع

 

منابع و مأخذ:

[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,

and M. Young. Mach: A new kernel foundation for UNIX

  1. In Proc. of Summer USENIX ’86, pp. 93–112, June

[2] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe. The Eden

system: A technical review. IEEE Trans. on Software Engineering,

SE-11(1):43–59, Jan. 1985.

[3] D. Balfanz and L. Gong. Experience with secure multi-processing

in Java. In Proc. of the Eighteenth ICDCS, May 1998.

[4] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing

  1. In Proc. of SIGCOMM ’96, San Francisco, CA, Aug.

[5] P. Bernadat, L. Feeney, D. Lambright, and F. Travostino. Java sandboxes

meet service guarantees: Secure partitioning of CPU and

  1. TR TOGRI-TR9805, The Open Group Research Institute,

June 1998.

[6] B. N. Bershad, T. E. Anderson, E. D. Lazowska, and H. M. Levy.

Lightweight remote procedure call. ACM TOCS, 8(1):37–55, Feb.

[7] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,M. E. Fiuczynski,

  1. Becker, C. Chambers, and S. Eggers. Extensibility, safety, and

performance in the SPIN operating system. In Proc. of the 15th

SOSP, pp. 267–284, Copper Mountain, CO, Dec. 1995.

[8] A. D. Birrell and B. J. Nelson. Implementing remote procedure

  1. ACM TOCS, 2(1), Feb. 1984.

[9] A. P. Black, N. Huchinson, E. Jul, H. Levy, and L. Carter. Distribution

and abstract types in Emerald. IEEE Trans. on Software

Engineering, SE-13(1):65–76, 1987.

[10] J. Bruno, E. Gabber, B. Ozden, and A. Silberschatz. The Eclipse

operating system: Providing quality of service via reservation domains.

In Proc. of USENIX ’98, pp. 235–246, New Orleans, LA,

June 1998.

[11] J. Chase, F. Amador, E. Lazowska, H. Levy, and R. Littlefield. The

Amber system: Parallel programming on a network of multiprocessors.

In Proc. of the 12th SOSP, pp. 147–158, December 1989.

[12] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing

and protection in a single-address-space operating system. ACM

TOCS, 12(4):271–307, 1994.

[13] G. Clements and G. Morrison. Kore — an implementation of the

Java(tm) core class libraries. ftp://sensei.co.uk/misc/kore.tar.gz OR

http://www.cs.utah.edu/projects/flux/java/kore/.

[14] G. Czajkowski, C.-C. Chang, C. Hawblitzel, D. Hu, and T. von

  1. Resource management for extensible internet servers. In
  2. of the 8th ACM SIGOPS European Workshop, Sintra, Portugal,
  3. 1998. To appear.

[15] P. Dasgupta et al. The design and implementation of the Clouds distributed

operating system. Computing Systems, 3(1), Winter 1990.

[16] Digitivity Corp. Digitivity CAGE, 1997. http://-

  1. digitivity.com/overview.html.

[17] S. Dorward, R. Pike, D. L. Presotto, D. Ritchie, H. Trickey, and

  1. Winterbottom. Inferno. In Proc. of the 42nd IEEE COMPCON,

San Jose, CA, Feb. 1997.

[18] P. Druschel and G. Banga. Lazy receiver processing (LRP): A network

subsystem architecture for server systems. In Proc. of the

Second OSDI, pp. 261–275, Seattle, WA, Oct. 1996.

[19] The E extensions to Java. http://www.communities.com/products/-

tools/e/e white paper.html.

[20] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers.

The Flux OSKit: A substrate for OS and language research. In

  1. of the 16th SOSP, pp. 38–51, St. Malo, France, Oct. 1997.

[21] B. Ford, M. Hibler, J. Lepreau, P. Tullmann, G. Back, and S. Clawson.

Microkernels meet recursive virtual machines. In Proc. of the

Second OSDI, pp. 137–151, Seattle, WA, Oct. 1996.

[22] B. Ford and S. Susarla. CPU inheritance scheduling. In Proc. of the

Second OSDI, pp. 91–105, Seattle, WA, Oct. 1996.

[23] M. Franz. Beyond Java: An infrastructure for high-performance

mobile code on the World Wide Web. In S. Lobodzinski and

  1. Tomek, editors, Proc. of WebNet ’97, pp. 33–38, Oct. 1997.

[24] L. Gong, M. Mueller, H. Prafullchandra, and R. Schemers. Going

beyond the sandbox: An overview of the new security architecture

in the Java development kit 1.2. In Proc. of USENIX Symp. on

Internet Technologies and Systems, pp. 103–112, Monterey, CA,

  1. 1997.

[25] L. Gorrie. Echidna — a free multiprocess system in Java.

http://www.javagroup.org/echidna/.

[26] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.

The Java Series. Addison-Wesley, 1996.

[27] D. Hagimont and L. Ismail. A protection scheme for mobile agents

on Java. In Proc. of the Workshop on Persistence and Distribution

in Java, Lisbon, Portugal, Oct. 1997.

[28] J. H. Hartman et al. Joust: A platform for communication-oriented

liquid software. TR 97–16, Univ. of Arizona, CS Dept., Dec. 1997.

[29] C. Hawblitzel, C.-C. Chang, G. Czajkowski, D. Hu, and T. von

  1. Implementing multiple protection domains in Java. In Proc.

of USENIX ’98, pp. 259–270, New Orleans, LA, 1998.

[30] I. M. Leslie, D. McAuley, R. J. Black, T. Roscoe, P. R. Barham,

  1. M. Evers, R. Fairbairns, and E. A. Hyden. The design and implementation

of an operating system to support distributed multimedia

  1. IEEE Journal on Selected Areas in Communications,

14(7):1280–1297, Sept. 1996.

[31] S. Liang and G. Bracha. Dynamic class loading in the Java virtual

  1. In Proc. of OOPSLA ’98, Vancouver, BC, Oct. 1998. To
  2. appear.

[32] T. Limming in Argus. CACM, 31(3):300–

312, Mar. 1988.

[34] D.Malkhi, M. K. Reiter, and A. D. Rubin. Secure execution of Java

applets using a remote playground. In Proc. of the 1998 IEEE Symp.

on Security and Privacy, pp. 40–51, Oakland, CA, May 1998.

[35] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout

operating system. In Proc. of the Second OSDI, pp. 153–167, Seattle,

WA, Oct. 1996.

[36] K. Nilsen. Java for real-time. Real-Time Systems Journal, 11(2),

[37] D. Plainfoss´e and M. Shapiro. A survey of distributed garbage collection

  1. In Proc. of the 1995 IWMM, Kinross, Scotland,
  2. 1995.

[38] D. Presotto, R. Pike, K. Thompson, and H. Trickey. Plan 9, a

distributed system. In Proc. of the USENIX Workshop on Microkernels

and Other Kernel Architectures, 1992.

[39] D. D. Redell, Y. K. Dalal, T. R. Horsley, H. C. Lauer, W. C. Lynch,

  1. R. McJones, H. G. Murray, and S. C. Purcell. Pilot: An operating

system for a personal computer. CACM, 23(2):81–92, 1980.

[40] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien,

  1. Guillemont, F. Herrmann, C. Kaiser, S. Langlois, P. L´eonard,

and W. Neuhauser. The Chorus distributed operating system. Computing

Systems, 1(4):287–338, Dec. 1989.

[41] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with

disaster: Surviving misbehaved kernel extensions. In Proc. of the

Second OSDI, pp. 213–227, Seattle, WA, Oct. 1996.

[42] E. G. Sirer, R. Grimm, B. N. Bershad, A. J. Gregory, and

  1. McDirmid. Distributed virtual machines: A system architecture

for network computing. In Proc. of the Eighth ACM SIGOPS

European Workshop, Sept. 1998.

[43] Sun Microsystems, Inc. JavaOS: A standalone Java environment,

  1. 1997. http://www.javasoft.com/products/javaos/-
  2. white.html.

[44] D. C. Swinehart, P. T. Zellweger, R. J. Beach, and R. B. Hagmann.

A structural view of the Cedar programming environment. ACM

TOPLAS, 8(4):419–490, October 1986.

[45] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall,

and G. J. Minden. A survey of active network research. IEEE

Communications Magazine, 35(1):80–86, Jan. 1997.

[46] Transvirtual Technologies Inc. http://www.transvirtual.com/.

[47] P. Tullmann and J. Lepreau. Nested Java processes: OS structure

for mobile code. In Proc. of the Eighth ACM SIGOPS European

Workshop, Sintra, Portugal, Sept. 1998.

[48] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient

software-based fault isolation. In Proc. of the 14th SOSP, pp. 203–

216, Asheville, NC, Dec. 5–8, 1993.

[49] C. A. Waldspurger, T. Hogg, B. A. Huberman, J. O. Kephart, and

  1. Stornetta. Spawn: A distributed computatational economy. IEEE
  2. on Software Engineering, 18(2):103–117, Feb. 1992.

[50] D. S. Wallach, D. Balfanz, D. Dean, and E. W. Felten. Extensible

security architectures for Java. In Proc. of the 16th SOSP, pp. 116–

128, Oct. 1997.

[51] D. J.Wetherall, J. Guttag, and D. L. Tennenhouse. ANTS: A toolkit

for building and dynamically deploying network protocols. In Proc.

of IEEE OPENARCH ’98, San Francisco, CA, Apr. 1998.

[52] P. R. Wilson. Uniprocessor garbage collection techniques. In Proc.

of the 1992 IWMM, St. Malo, France, Sept. 1992.

[53] N.Wirth and J. Gutknecht. Project Oberon. ACM Press, New York,

NY, 1992.


دانلود با لینک مستقیم


پروژه اصول طراحی و پیاده سازی و کاربرد(kemel_j). doc

دانلود مقاله کامل پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

اختصاصی از اس فایل دانلود مقاله کامل پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


دانلود مقاله کامل پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 30

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که   شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد  در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو     مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر    و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

 آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت  و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .

این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .

با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .

همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .

این مقاله یک معماری شبکه عصبی آنالوگ را توصیف می کند که برای الگوریتم های ژنتیک  بهینه شده اند .

سیناپس ها کوچک 10X10μm و سریع هستند .

فرکانس اندازه گیری شده شبکه تا 50MHz افزایش می یابد که در نتیجه بیش از  200 گیگا اتصال در ثانیه  برای آرایه کاملی از 4096 سیناپس بدست می آید .

برای ساختن شبکه های بزرگتر باید امکان ترکیب چندین شبکه کوچکتر روی یک سطح یا  روی تراشه های مختلف وجود داشته باشد که با محدود کردن عملکرد آنالوگ به سیناپس ها و ورودیهای نرون بدست می آید .

ورودیهای شبکه و خروجیهای نرون بصورت دیجیتالی کدینگ می شود .

در نتیجه عملکرد سیناپس از ضرب به جمع کاهش می یابد .

این مسئله باعث می شود که حجم سیناپس کوچکتر شود و عدم تطبیق پذیری قطعه بطورکامل جبران سازی شود .

چونکه هر سیناپس یک صفر یا وزن اختصاصی اش را اضافه می کند که می تواند شامل هر تصحیح ضروری باشد .

سیگنالهای آنالوگ بین لایه های شبکه آنالوگ ، بوسیله اتصالات چند بیتی اختیاری بیان می شوند .

شبکه ارائه شده در این مقاله برای یک جریان عددی real-time‌ در محدوده فرکانسی 1 – 100MHz و پهنای 64 بیت بهینه شده است .

قصد داریم که آن را برای کاربردهای انتقال داده مثل DSL‌ سرعت بالا ، پردازش تصویر بر اساس داده دیجیتالی لبه تولید شده توسط تصاویر دوربین بوسیله تراشه پیش پردازش  آنالوگی و ارزیابی تناسبی آرایه ترانزیستور قابل برنامه ریزی که در گروه ما توسعه داده شده است بکار ببریم .

2- تحقق شبکه عصبی

2-1- اصول عملکرد

شکل1 یک بیان سمبولیک از شبکه عصبی دور زننده را نشان می دهد .

هر نرون ورودی (دایره کوچک) بوسیله یک سیناپس (پیکان) به هر نرون خروجی متصل شده است .

نرونهای خروجی توسط مجموعه دومی از نرون های ورودی به داخل شبکه فیدبک شده اند .

نرون های ورودی فقط بجای تقویت کننده ها بکار گرفته می شوند در صورتیکه پردازش                              

در نرون های خروجی انجام می شود .

وزنهای سیناپس هایی که در حالت صفر تنظیم شده اند با پیکانهای خط چین نشان داده شده اند .

یک شبکه فیدبک آموزش داده شده توسط الگوریتم ژنتیک معمولا تعداد ثابتی از لایه ها ندارد .

البته الگوریتم می تواند به تعداد ثابتی از لایه ها محدود شود ، همانطوریکه در شکل1 نشان  داده شده  است .

این معماری شبکه های چند لایه مجازی را با انتخاب وزنهای مناسب ارائه می دهد . یک مثال برای ساختار 2 لایه در سمت راست شکل 1 نشان داده شده است .

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود مقاله کامل پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

دانلود تحقیق درباره پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

اختصاصی از اس فایل دانلود تحقیق درباره پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درباره پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک


دانلود تحقیق درباره پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 30

 

پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

خلاصه

مفید بودن شبکه عصبی آنالوگ مصنوعی بصورت خیلی نزدیکی با میزان قابلیت آموزش پذیری آن محدود می شود .

این مقاله یک معماری شبکه عصبی آنالوگ جدید را معرفی می کند که وزنهای بکار برده شده در آن توسط الگوریتم ژنتیک تعیین می شوند .

اولین پیاده سازی VLSI ارائه شده در این مقاله روی سیلیکونی با مساحت کمتر از 1mm که   شامل 4046 سیناپس و 200 گیگا اتصال در ثانیه است اجرا شده است .

از آنجائیکه آموزش می تواند در سرعت کامل شبکه انجام شود بنابراین چندین صد حالت منفرد  در هر ثانیه می تواند توسط الگوریتم ژنتیک تست شود .

این باعث می شود تا پیاده سازی مسائل بسیار پیچیده که نیاز به شبکه های چند لایه بزرگ دارند عملی بنظر برسد .

1- مقدمه

شبکه های عصبی مصنوعی به صورت عمومی بعنوان یک راه حل خوب برای مسائلی از قبیل تطبیق الگو     مورد پذیرش قرار گرفته اند .

علیرغم مناسب بودن آنها برای پیاده سازی موازی ، از آنها در سطح وسیعی بعنوان شبیه سازهای عددی در سیستمهای معمولی استفاده می شود .

یک دلیل برای این مسئله مشکلات موجود در تعیین وزنها برای سیناپسها در یک شبکه بر پایه مدارات آنالوگ است .

موفقترین الگوریتم آموزش ، الگوریتم Back-Propagation است .

این الگوریتم بر پایه یک سیستم متقابل است که مقادیر صحیح را از خطای خروجی شبکه محاسبه می کند .

یک شرط لازم برای این الگوریتم دانستن مشتق اول تابع تبدیل نرون است .

در حالیکه اجرای این مسئله برای ساختارهای دیجیتال از قبیل میکروپروسسورهای معمولی و سخت افزارهای خاص آسان است ، در ساختار آنالوگ با مشکل روبرو می شویم .

دلیل این مشکل ، تغییرات قطعه و توابع تبدیل نرونها و در نتیجه تغییر مشتقات اول آنها از نرونی به نرون دیگر    و از تراشه ای به تراشه دیگر است و چه چیزی می تواند بدتر از این باشد که آنها با دما نیز تغییر کنند .

ساختن مدارات آنالوگی که بتوانند همه این اثرات را جبران سازی کنند امکان پذیر است ولی این مدارات در مقایسه با مدارهایی که جبران سازی نشده اند دارای حجم بزرگتر و سرعت کمتر هستند .

برای کسب موفقیت تحت فشار رقابت شدید از سوی دنیای دیجیتال ، شبکه های عصبی آنالوگ نباید سعی کنند که مفاهیم دیجیتال را به دنیای آنالوگ انتقال دهند .

در عوض آنها باید تا حد امکان به فیزیک قطعات متکی باشند تا امکان استخراج یک موازی سازی گسترده در تکنولوژی VLSI مدرن بدست آید .

شبکه های عصبی برای چنین پیاده سازیهای آنالوگ بسیار مناسب هستند زیرا جبران سازی نوسانات غیر قابل اجتناب قطعه می تواند در وزنها لحاظ شود .

مسئله اصلی که هنوز باید حل شود آموزش است .

حجم بزرگی از مفاهیم شبکه عصبی آنالوگ که در این زمینه می توانند یافت شوند ، تکنولوژیهای گیت شناور را جهت ذخیره سازی وزنهای آنالوگ بکار می برند ، مثل EEPROM حافظه های Flash .

در نظر اول بنظر می رسد که این مسئله راه حل بهینه ای باشد .

 آن فقط سطح کوچکی را مصرف می کند و بنابراین حجم سیناپس تا حد امکان فشرده می شود (کاهش تا حد فقط یک ترانزیستور) .

دقت آنالوگ می تواند بیشتر از 8 بیت باشد و زمان ذخیره سازی داده (با دقت 5 بیت) تا 10 سال افزایش می یابد .

اگر قطعه بطور متناوب مورد برنامه ریزی قرار گیرد ، یک عامل منفی وجود خواهد داشت  و آن زمان برنامه ریزی و طول عمر محدود ساختار گیت شناور است .

بنابراین چنین قطعاتی احتیاج به وزنهایی دارند که از پیش تعیین شده باشند .

اما برای محاسبه وزنها یک دانش دقیق از تابع تبدیل شبکه ضروری است .

برای شکستن این چرخه پیچیده ، ذخیره سازی وزن باید زمان نوشتن کوتاهی داشته باشد .

این عامل باعث می شود که الگوریتم ژنتیک وارد محاسبات شود .

با ارزیابی تعداد زیادی از ساختارهای تست می توان وزنها را با بکار بردن یک تراشه واقعی تعیین کرد .

همچنین این مسئله می تواند حجم عمده ای از تغییرات قطعه را جبران سلزی کند ، زیرا داده متناسب شامل خطاهایی است که توسط این نقایص ایجاد شده اند .

این مقاله یک معماری شبکه عصبی آنالوگ را توصیف می کند که برای الگوریتم های ژنتیک  بهینه شده اند .

سیناپس ها کوچک 10X10μm و سریع هستند .

فرکانس اندازه گیری شده شبکه تا 50MHz افزایش می یابد که در نتیجه بیش از  200 گیگا اتصال در ثانیه  برای آرایه کاملی از 4096 سیناپس بدست می آید .

برای ساختن شبکه های بزرگتر باید امکان ترکیب چندین شبکه کوچکتر روی یک سطح یا  روی تراشه های مختلف وجود داشته باشد که با محدود کردن عملکرد آنالوگ به سیناپس ها و ورودیهای نرون بدست می آید .

ورودیهای شبکه و خروجیهای نرون بصورت دیجیتالی کدینگ می شود .

در نتیجه عملکرد سیناپس از ضرب به جمع کاهش می یابد .

این مسئله باعث می شود که حجم سیناپس کوچکتر شود و عدم تطبیق پذیری قطعه بطورکامل جبران سازی شود .

چونکه هر سیناپس یک صفر یا وزن اختصاصی اش را اضافه می کند که می تواند شامل هر تصحیح ضروری باشد .

سیگنالهای آنالوگ بین لایه های شبکه آنالوگ ، بوسیله اتصالات چند بیتی اختیاری بیان می شوند .

شبکه ارائه شده در این مقاله برای یک جریان عددی real-time‌ در محدوده فرکانسی 1 – 100MHz و پهنای 64 بیت بهینه شده است .

قصد داریم که آن را برای کاربردهای انتقال داده مثل DSL‌ سرعت بالا ، پردازش تصویر بر اساس داده دیجیتالی لبه تولید شده توسط تصاویر دوربین بوسیله تراشه پیش پردازش  آنالوگی و ارزیابی تناسبی آرایه ترانزیستور قابل برنامه ریزی که در گروه ما توسعه داده شده است بکار ببریم .

2- تحقق شبکه عصبی

2-1- اصول عملکرد

شکل1 یک بیان سمبولیک از شبکه عصبی دور زننده را نشان می دهد .

هر نرون ورودی (دایره کوچک) بوسیله یک سیناپس (پیکان) به هر نرون خروجی متصل شده است .

نرونهای خروجی توسط مجموعه دومی از نرون های ورودی به داخل شبکه فیدبک شده اند .

نرون های ورودی فقط بجای تقویت کننده ها بکار گرفته می شوند در صورتیکه پردازش                              

در نرون های خروجی انجام می شود .

وزنهای سیناپس هایی که در حالت صفر تنظیم شده اند با پیکانهای خط چین نشان داده شده اند .

یک شبکه فیدبک آموزش داده شده توسط الگوریتم ژنتیک معمولا تعداد ثابتی از لایه ها ندارد .

البته الگوریتم می تواند به تعداد ثابتی از لایه ها محدود شود ، همانطوریکه در شکل1 نشان  داده شده  است .

این معماری شبکه های چند لایه مجازی را با انتخاب وزنهای مناسب ارائه می دهد . یک مثال برای ساختار 2 لایه در سمت راست شکل 1 نشان داده شده است .

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درباره پیاده سازی VLSI یک شبکه عصبی آنالوگ مناسب برای الگوریتم های ژنتیک

تحقیق در مورد مدیریت تلفیقی آفات چهار مولفه اصلی پیاده سازیipm

اختصاصی از اس فایل تحقیق در مورد مدیریت تلفیقی آفات چهار مولفه اصلی پیاده سازیipm دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مدیریت تلفیقی آفات چهار مولفه اصلی پیاده سازیipm


تحقیق در مورد مدیریت تلفیقی آفات چهار مولفه اصلی پیاده سازیipm

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه56

بخشی از فهرست مطالب

مقدمه

 

تعاریف مدیریت تلفیقی آفات

 

 

 

چهار مولفه اصلی پیاده سازی IPM

 

روش های اجرای مدیریت تلفیقی آفات

 

سودها و موانع مدیریت تلفیقی آفات

 

نتیجه گیری

 

آبیاری در فضای سبز

 

امروزه بسیاری از موسسات زیست محیطی نسبت به اثرات سموم شیمیایی واکنش های زیادی از خود نشان می دهند . کشت های تک محصولی نیز که در دنیای امروز با کمک تجهیزات پیشرفته مکانیکی توسعه یافته ، مصرف این سموم را افزایش داده است . لذا ما بر آن هستیم تا با بررسی مدیریت تلفیقی آفات راهی برای کاهش سموم و مصرف بهینه آن پیدا کنیم . در این مقاله بعد از ذکر تاریخچه ای برای مدیریت تلفیقی آفات(IPM)تعاریفی از آن را ارایه می دهیم . در مرحله بعد مولفه های پیاده سازی آن ذکر شده و در ادامه روش های بکارگیری مدیریت تلفیقی آفات در کشاورزی مطرح می شود . در انتها نیز با ذکر موانع و سودهای این سیستم جدید نتیجه گیری نهایی را ارایه می دهیم .

 

در زمانی که انسان ها در روستاها و دهکده ها جمع شدند و شروع به کاشت محصولات انتخابی کردند ، مشکل آفت مطرح شد . آن ها با آفاتی روبرو بودند که به محصولاتشان حمله می کردند . از طریق آزمون و خطا یاد گرفتند که چطور روش های خود را اصلاح کرده و محیط را تغییر دهند . عملیاتی نظیر نابود کردن محصولات مزاحم ، شخم زدن و حذف حشرات خاکزی ، تغییر در زمان کشت ، هرس کردن ، گرد گیری با سولفور که برخی از این روش ها هنوز هم پابرجاست(15) .

 

این روش ها توسعه یافت و تا اواخر دهه 1800 استفاده شد . افزایش سطوح زیر کشت و ساخت تجهیزات مکانیزه بزرگ تر و تک کشتی ، سبب کاهش تنوع زیستی شدو لذا مشکل آفات حاد تر شد . به طوری که دیگر از طریق روش های فیزیکی نمی شد آفات را کنترل کرد . در آن زمان یک سری از سموم مهلک برای آفات ساخته شد که نتایج سودمند کمی داشت تا این که در دهه 1870 سم Paris Green برای کنترل حشرات و درسال 1882سم Bordeaux mixtureبرای کنترل قارچ ها ساخته شد . این سموم طلایه دار تولید سم هایی در اوایل دهه 1900 برای کنترل آفات در کشاورزی شدند . در آن زمان مقاومت آفات به این سموم مشخص شد ولی تا سال 1940 روش های مبارزه زراعی چندان مطرح نشد . در دهه 1960

 


دانلود با لینک مستقیم


تحقیق در مورد مدیریت تلفیقی آفات چهار مولفه اصلی پیاده سازیipm

پاورپوینت درباره آشنایی با متدلوژی ارزیابی و انتخاب راه‌ حل و نظارت بر پیاده سازیERP

اختصاصی از اس فایل پاورپوینت درباره آشنایی با متدلوژی ارزیابی و انتخاب راه‌ حل و نظارت بر پیاده سازیERP دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره آشنایی با متدلوژی ارزیابی و انتخاب راه‌ حل و نظارت بر پیاده سازیERP


پاورپوینت درباره آشنایی با متدلوژی ارزیابی و انتخاب راه‌ حل و نظارت بر پیاده سازیERP

فرمت فایل : power point  (لینک دانلود پایین صفحه) تعداد اسلاید  : 33 اسلاید

 

 

 

 

 

 

بخشی از اسلایدها :

سیستم برنامهریزی سازمان، یک بسته نرم افزاری قابل تنظیم و از پیش استاندارد شده تجاری است که هدف آن یکپارچگی اطلاعات و جریان اطلاعات بین تمامی بخشهای سازمان از جمله مالی، حسابداری، منابع انسانی، زنجیره عرضه و مدیریت مشتریان با رویکرد مشتری گرایی و پاسخ ‌به بازار  و مبتنی بر تجربیات موفق می باشد.


مزایای erp :

ایجاد یکپارچگی اطلاعاتی در سازمان و افزایش سازگاری در اطلاعات موجود

 

امکان استفاده از روش های استاندارد و متداول در جهان  (Best Practices)
 
مهندسی مجدد فرآیندهای سازمانی و کاهش زمان انجام آنها
 
تبدیل فرایندهای سازمانی از حالت ضمنی به حالت صریح
 
تغییر تمرکز از برنامه نویسی کامپیوتری در سازمان به بهبود فرایندها
 
بهبود کیفیت اطلاعات و سرعت دستیابی به آن
 
بهبود تعاملات با مشتریان، تامین کنندگان و پیمانکاران

دانلود با لینک مستقیم


پاورپوینت درباره آشنایی با متدلوژی ارزیابی و انتخاب راه‌ حل و نظارت بر پیاده سازیERP