اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

اختصاصی از اس فایل پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc دانلود با لینک مستقیم و پر سرعت .

پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc


پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

 

 

 

 

 

نوع فایل: word

قابل ویرایش 85 صفحه

 

چکیده:

پس از کشف نانولوله های کربنی توسط ایجیما و همکارانش بررسی های بسیار زیادی بر روی این ساختارها در سایر علوم انجام شده است. این ساختارها به دلیل خواص منحصر به فرد مکانیکی و الکتریکی که از خود نشان داده اند جایگزین مناسبی برای سیلیکون و ترکیبات آن در قطعات الکترونیکی خواهند شد. در اینجا به بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ که به عنوان یک کانال بین چشمه و دررو قرار داده شده پرداختیم و نحوه ی توزیع جریان در ترانزیستور های اثر میدانی را در شرایط دمایی و میدان های مختلف بررسی کرده ایم. از آنجایی که سرعت خاموش و روشن شدن ترانزیستور برای ما در قطعات الکترونیکی و پردازنده های کامپوتری از اهمیت ویژه ای برخوردار است، انتخاب نانولوله ای که تحرک پذیری بالایی داشته باشد بسیار مهم است. نتایج بررسی ها نشان می دهد تحرک پذیری الکترون در نانولوله های کربنی متفاوت به ازای میدان های مختلفی که در طول نانولوله ها اعمال شود، مقدار بیشینه ای را خواهد گرفت. بنا بر این در طراحی ترانزیستورها با توجه به مشخصه های هندسی ترانزیستور و اختلاف پتانسیلی که بین چشمه و دررو آن اعمال می شود باید نانولوله ای را انتخاب کرد که تحرک پذیری مناسبی داشته باشد.

واژه های کلیدی

نانولوله ی کربنی، ترانزیستور اثر میدانی، مدل ثابت نیرو ، تحرک پذیری الکترون

 

مقدمه:

با گذر زمان و پیشرفت علم و تکنولوژی نیاز بشر به کسب اطلاعات و سرعت پردازش و ذخیره سازی آنها به صورت فزاینده ای بالا رفته است. گوردن مور معاون ارشد شرکت اینتل در سال 1965 نظریه ای ارائه داد مبنی بر اینکه در هر 18 ماه تعداد ترانزیستورهایی که در هر تراشه به کار می رود دو برابر شده و اندازه آن نیز نصف می شود [1]. این کوچک شدگی نگرانی هایی را به وجود آورده است. بر اساس این نظریه در سال 2010 باید ترانزیستورهایی وجود داشته باشد که ضخامت اکسید درگاه که یکی از اجزای اصلی ترانزیستور است به کمتر از یک نانومتر برسد. بنا بر این باید بررسی کرد، اکسید سیلیسیم به عنوان اکسید درگاه در ضخامت تنها کمتر از یک نانومتر انتظارات ما را در صنایع الکترونیک برآورده می کند یا نه. در راستای همین تحقیقات گروه دیگری از دانشمندان به بررسی نیترید سیلیکون به عنوان نامزد جدیدی برای اکسید درگاه پرداختند و نشان دادند که این ماده می تواند جایگزین مناسبی برای اکسید سیلیکون باشد [2]. جهت تولید ترانزیستورهای نسل امروز احتیاج به دانشی داریم که بتوانیم در ابعاد نانو تولیدات صنعتی از تراشه ها را داشته باشیم. بنا بر این توجه جوامع علمی و اقتصادی جهان بر این شاخه از علم که به فن آوری نانو معروف است، جلب شده است. در این بین نانولوله های کربنی به دلیل خواص منحصر به فرد الکتریکی و مکانیکی که از خود نشان داده اند توجه بسیاری از دانشمندان را به خود جلب کرده اند [3و4].

در راستای این تحقیقات ما به بررسی خواص الکتریکی نانولوله های کربنی پرداخته ایم. بسیاری از دانشمندان بر این باور هستند که نانولوله های کربنی به دلیل قابلیت رسانش ویژه یک بعدی جای مواد سیلیکونی در تراشه های نسل آینده را خواهند گرفت [5و6].

کربن با عدد اتمی 6 در گروه ششم جدول تناوبی قرار دارد. این عنصر ترکیب اصلی موجودات زنده را در بر گرفته است. بنا بر این بیشتر دانشمندان سعی می کنند ترکیبات کربنی را در شاخه ی شیمی آلی بررسی کنند. این عنصر از دیر باز برای انسان به صورت دوده و ذغال چوب شناخته شده بود. گونه-های متفاوت دیگری از کربن نیز وجود دارند که تفاوت این گونه ها صرفاً به شکل گیری اتم های کربن نسبت به هم یا به ساختار شبکه ای آن ها بر می گردد.

 

فهرست مطالب:

مقدمه

فصل اول

مقدمهای بر کربن و اشکال مختلف آن در طبیعت و کاربرهای آن

1-1 مقدمه

1-2 گونه های مختلف کربن در طبیعت

1-2-1 کربن بیشکل

1-2-2 الماس

1-2-3 گرافیت

1-2-4 فلورن و نانو لولههای کربنی

1-3 ترانزیستورهای اثر میدانی فلز- اکسید - نیمرسانا و ترانزیستور های اثرمیدانی نانولولهی کربنی

فصل 2

بررسی ساختار هندسی و الکتریکی گرافیت و نانولولههای کربنی

2-1 مقدمه

2-2 ساختار الکترونی کربن

2-2-1 اربیتال p2 کربن

2-2-2 روش وردشی

2-2-3 هیبریداسون اربیتالهای کربن

2-3 ساختار هندسی گرافیت و نانولولهی کربنی

2-3-1 ساختار هندسی گرافیت

2-3-2 ساختار هندسی نانولولههای کربنی

2-4 یاختهی واحد گرافیت و نانولولهی کربنی

2-4-1 یاختهی واحد صفحهی گرافیت

2-4-2 یاخته واحد نانولولهی کربنی

2-5 محاسبه ساختار نواری گرافیت و نانولولهی کربنی

2-5-1 مولکولهای محدود

2-5-2 ترازهای انرژی گرافیت

2-5-3 ترازهای انرژی نانولولهی کربنی

2-5-4 چگالی حالات در نانولولهی کربنی

2-6 نمودار پاشندگی فونونها در صفحهی گرافیت و نانولولههای کربنی

2-6-1 مدل ثابت نیرو و رابطهی پاشندگی فونونی برای صفحهی گرافیت

2-6-2 رابطهی پاشندگی فونونی برای نانولولههای کربنی

فصل 3

پراکندگی الکترون فونون

3-1 مقدمه

3-2 تابع توزیع الکترون

3-3 محاسبه نرخ پراکندگی کل

3-4 شبیه سازی پراکندگی الکترون – فونون

3-6 ضرورت تعریف روال واگرد

فصل 4

بحث و نتیجه گیری

4-1 مقدمه

4-2 نرخ پراکندگی

4-3 تابع توزیع در شرایط مختلف فیزیکی

4-4 بررسی سرعت میانگین الکترونها، جریان، مقاومت و تحرک پذیری الکترون

4-4-1 بررسی توزیع سرعت در نانولولههای زیگزاگ نیمرسانا

4-4-2 بررسی جریان الکتریکی در نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی مقاومت نانولولههای زیگزاگ نیمرسانا

4-4-3 بررسی تحرک پذیری الکترون در نانولولههای زیگزاگ نیمرسانا

نتیجه گیری

پیشنهادات

ضمیمهی (الف) توضیح روال واگرد.

منابع

چکیده انگلیسی

 

فهرست شکل ها :

 شکل1-1. گونه های مختلف کربن

شکل 1-2. ترانزیستور اثر میدانی

شکل 1-3. ترانزیستور نانولوله ی کربنی

شکل 2-1. اربیتال

شکل 2-2. هیبرید

شکل 2-3. ساختار

شکل 2-4. شبکه گرافیت

شکل 2-5. یاخته ی واحد گرافیت

شکل2-6. یاخته ی واحدنانولوله ی کربنی

شکل 2-7. گونه های متفاوت نانولوله های کربنی

شکل 2- 8. تبهگنی خطوط مجاز در نانولوله ی کربنی

شکل 2-9. مؤلفه های ماتریس ثابت نیرو

 

فهرست جدول ها:

جدول 2-1 عناصر ماتریس ثابت نیرو

 

فهرست نمودارها:

نمودار 2-1. نوار انرژی الکترونی گرافیت

نمودار 2-2. نوار انرژی الکترونی نانولوله ی کربنی

نمودار 2-3. چگالی حالات در نانولوله ی کربنی

نمودار 2-4. نوار سه بعدی انرژی فونونی گرافیت

نمودار 2-5. نوار انرژی فونونی در راستای خطوط متقارن منطقه اول بریلوئن

نمودار 2-6. نوار انرژی فونونی نانولوله ی کربنی

نمودار 3-1. سطح فرمی در نانولوه های کربنی

نمودار 3-2. منطقه ی تکرار شونده در نانولوله های کربنی

نمودار 3-3. نقاط متقارن در مسئله پراکندگی

نمودار 4-1. نرخ پراکندگی در دو نانولوله ی زیگزاگ  و

نمودار 4-2. وابستگی دمایی نرخ پراکندگی

نمودار4-3. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار4-4. تابع توزیع در میدان ضعیف و قوی  نانولوله ی

نمودار 4-5. وابستگی سرعت میانگین الکترون به دما در نانولوله ی کربنی

نمودار 4-6. توزیع سرعت در نانولوله های زیگزاگ

نمودار 4-7. نمودار جریان – ولتاژ در مورد نانولوله های زیگزاگ

نمودار 4-8. مقاومت نانولوله های مختلف

 

فهرست پیوست ها:

پیوست الف: توضیح روال واگرد

چکیده انگلیسی

 

منابع و مأخذ:

[1] G. Moore, Electronics, 38, (1965), 114.

[2] A. Bahari, P. Morgen, Surface Science, 602, (2008), 2315.

[3] Y.X. Liang, T.H. Wang, Physica E, 23, (2004), 232.

[4] Christian Klinke, Ali Afzali, Chemical Physics Letters, 430, (2006), 75.

[5] Jing Guo, Mark Lundstrom, and Supriyo Datta, Applied Physics Letters, 80, (2002),3192.

[6] Ph. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B, 323, (2002), 6.

[7] H. Raffi-Tabar, Physics Reports, 390, (2004), 235.

[8] Jianwei Che, Tahir¸ Cagin and William A Goddard, Nanotechnology, 10, (1999), 263.

[9] Qingzhong Zhao, Marco Buongiorno Nardelli and J.Bernholc, Physical Review B

, 65, (2002) 144105.

[10] Paul L. McEuen, Michael S. Fuhrer and Hongkun Park, IEEE Transactions on Nanotechnology, 1, (2002), 78.

[11] S. Iijima and T. Ichihashi, Nature, 363, (1993), 603.

[12] K.B.K. Teo., IEE Proc.-Circuits Devices Syst. 151, (2004), 443.

[13] Rodney S.Ruoff, DongQian, WingKam Liu, C.R.Physique, 4, (2003), 993.

[14] Cheung, C. L., Kurtz, A., Park, H. and Lieber, CMJ Phys. Chem B, 106, (2002), 2429.

[15] Y. Kobayashi, H. Nakashima, D. Takagi and Y. Homma, Thin Solid Films, 464, (2004), 286  

[16] Anazawa, Kazunori, Shimotani, Kei, Manabe, Chikara, Watanabe, Hiroyuki and Shimizu, Masaaki, Applied Physics Letters, 81, (2002), 739.

[17] Lee Seung Jong, Baik Hong Koo, Yoo Jae eun and Han Jong hoon, Diamond and Related Materials, 11, (2002), 914.

[18] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chemical Physics Letters, 243, (1995), 49.

[19] E. Yoo, L. Gao, T. Komatsu, N. Yagai, K. Arai, T. Yamazaki, K. Matsuishi, T.Matsumoto, and J. Nakamura, J. Phys. Chem. B, 108, (2004), 18903.

[20] Bae-HorngChen , Jeng-Hua Wei , Po-Yuan Lo , Hung-Hsiang Wang , Ming-Jinn Lai ,  Ming-JinnTsai, Tien Sheng Chao , Horng-Chih Lin and Tiao-Yuan Huang, Solid-State Electronics, 50, (2006), 1341.

[21] Ji-YongPark, Nanotechnology, 18, (2007), 095202.

[22] Madhu Menon, Physical Review Letters, 79, (1997), 4453.

[23] R.Satio, M. S. Dresselhaus, G. Dresselhaus, Physical Properties Of Carbon Nanotubes, Imperial College Press, ISBN 1-86094-093-5, (1998).

[24] Jens Peder Dahl, Introduction to the Quantum World of Atoms and Molecules, World Scientific Publishing Company, ISBN: 9810245653, (2001).

[25] Leonard L. Schiff, Quantum Mechanics 1st Edition, McGraw – Hill Book Company, ISBN: 0070552878, (1948).

[26] Charles Kittle, Introduction to solid state physics 7th edition, John Wiley and Sons, ISBN: 0-471-11181-3, (1996).

[27] Neil W. Ashcroft, N. David Mermin, Solid State Physics, Saunders College Publishing, ISBN: 0-03-083993-9, (1976).

[28] J. J. Sakurai, Modern Quantum Mechanics, Addision – Wesley Publishing, ISBN: 0-201-53929-2, (1994).

[29] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chemical Physics Letters, 209, (1993), 77.

[30] YXiao ,XHYan ,JXCao and JWDing, J.Phys. Condense Matter, 15, (2003), 341.

[31] A. S. Davydov, Quantum Mechanics, Pergamon Pr, ISBN: 0080204376, (1976).

[32] G. Pennington and N. Goldsman, Physical Review B, 68, (2003), 45426.

[33] G. Pennington and N. Goldsman, IEICE Transactions on Electronics, 86, 372 (2003).

[34] S. Saito and A. Zettle, Carbon Nanotubes Quantum Cylinders of Graphene, Elsevier, ISBN: 978-0-444-53276-3, (2008).

[35] Xinjian Zhou, Carbon Nanotube Transistors, Sensors, and Beyond, In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Cornell University, (2008).

[36] Ali Javey, Hydoungsub Kim, Markus Brink, Qian Wang, Ant Ural, Jing Guo, Paul Mcintyre, Paul Mceuen, Mark Lundstrom and Hongjie Dai, Nature materials, 1, (2002), 241.

 [37] J. M. Zeeman, Electrons and Phonons, The International Series Of Monographs On  Physics, ISBN:0-19-580779-8, (1960).

[38] JingGuo, MarkLundstrom, Applied Physics Letters, 86, (2005), 193103.

[39] Anisur Rahman, Jing Guo, Supriyo Datta and Mark S. Lundstrom, IEEE Transactions on Electron Devices, 50, (2003), 1853.

[40] D.V. Pozdnyakov, V.O. Galenchik, F.F. Komarov, V.M. Borzdov, Physica E, 33 (2006) 336.

 [41] R. Mickevicius, V. Mitin and U. K. Harithsa, J. Applied Physics, 75, (1994), 973.

 [42] Yung-Fu Chen and M. S. Fuhrer, Physical Review Letters, 95, (2005), 236803


دانلود با لینک مستقیم


پروژه بررسی خواص الکتریکی نانولوله های کربنی زیگزاگ. doc

مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از اس فایل مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پر سرعت .

مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

تعداد صفحات : 206

چکیده 1

 

فصل اول.

مقدمه نانو. 3

1-1 مقدمه. 4

   1-1-1 فناوری نانو. 4

1-2 معرفی نانولوله‌های کربنی.. 5

   1-2-1 ساختار نانو لوله‌های کربنی.. 5

   1-2-2 کشف نانولوله. 7

1-3 تاریخچه. 10

 

فصل دوم.

خواص و کاربردهای نانو لوله های کربنی.. 14

2-1 مقدمه. 15

2-2 انواع نانولوله‌های کربنی.. 16

   2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT). 16

   2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT). 19

2-3 مشخصات ساختاری نانو لوله های کربنی.. 21

   2-3-1 ساختار یک نانو لوله تک دیواره 21

   2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24

2-4 خواص نانو لوله های کربنی.. 25

   2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29

       2-4-1-1 مدول الاستیسیته. 29

       2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک... 33

       2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36

2-5 کاربردهای نانو فناوری.. 39

   2-5-1 کاربردهای نانولوله‌های کربنی.. 40

       2-5-1-1 کاربرد در ساختار مواد. 41

       2-5-1-2 کاربردهای الکتریکی و مغناطیسی.. 43

       2-5-1-3 کاربردهای شیمیایی.. 46

       2-5-1-4 کاربردهای مکانیکی.. 47

 

فصل سوم.

روش های سنتز نانو لوله های کربنی 55

3-1 فرایندهای تولید نانولوله های کربنی.. 56

   3-1-1 تخلیه از قوس الکتریکی.. 56

   3-1-2 تبخیر/ سایش لیزری.. 58

   3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59

   3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61

   3-1-5 رشد فاز  بخار 62

   3-1-6 الکترولیز. 62

   3-1-7 سنتز شعله. 63

   3-1-8 خالص سازی نانولوله های کربنی.. 63

3-2 تجهیزات.. 64

   3-2-1 میکروسکوپ های الکترونی.. 66

   3-2-2 میکروسکوپ الکترونی عبوری (TEM). 67

   3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM). 68

   3-2-4 میکروسکوپ های پروب پیمایشگر (SPM). 70

       3-2-4-1 میکروسکوپ های نیروی اتمی (AFM). 70

       3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM). 71

 

فصل چهارم.

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73

4-1 مقدمه. 74

4-2 مواد در مقیاس نانو. 75

   4-2-1 مواد محاسباتی.. 75

   4-2-2 مواد نانوساختار 76

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77

   4-3-1 چارچوب های تئوری در تحلیل مواد. 77

       4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77

4-4 روش های شبیه سازی.. 79

   4-4-1 روش دینامیک مولکولی.. 79

   4-4-2 روش مونت کارلو. 80

   4-4-3 روش محیط پیوسته. 80

   4-4-4 مکانیک میکرو. 81

   4-4-5 روش المان محدود (FEM). 81

   4-4-6 محیط پیوسته مؤثر. 81

4-5 روش های مدلسازی نانو لوله های کربنی.. 83

   4-5-1 مدلهای مولکولی.. 83

       4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83

       4-5-1-2 روش اب انیشو. 86

       4-5-1-3 روش تایت باندینگ... 86

       4-5-1-4 محدودیت های مدل های مولکولی.. 87

   4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87

       4-5-2-1 مدل یاکوبسون. 88

       4-5-2-2 مدل کوشی بورن. 89

       4-5-2-3 مدل خرپایی.. 89

       4-5-2-4 مدل  قاب فضایی.. 92

4-6 محدوده کاربرد مدل محیط پیوسته. 95

   4-6-1 کاربرد مدل پوسته پیوسته. 97

   4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97

   4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98

   4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99

   4-6-5 محدودیتهای مدل پوسته پیوسته. 99

       4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99

       4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99

   4-6-6 کاربرد مدل تیر پیوسته  100

 

فصل پنجم.

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102

5-1 مقدمه. 103

5-2 نیرو در دینامیک مولکولی.. 104

   5-2-1 نیروهای بین اتمی.. 104

       5-2-1-1 پتانسیلهای جفتی.. 105

       5-2-1-2 پتانسیلهای چندتایی.. 109

   5-2-2 میدانهای خارجی نیرو. 111

5-3 بررسی مدل های محیط پیوسته گذشته. 111

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113

   5-4-1 مدل انرژی- معادل. 114

       5-4-1-1 خصوصیات  محوری نانولوله های کربنی تک دیواره 115

       5-4-1-2 خصوصیات  محیطی نانولوله های کربنی تک دیواره 124

   5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131

       5-4-2-1 تکنیک عددی بر اساس المان محدود. 131

       5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141

   5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155

       5-4-3-1 مقدمه. 155

       5-4-3-2 ماتریس الاستیسیته. 157

       5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158

       5-4-3-4 تعیین و نگاشت المان. 158

       5-4-3-5 ماتریس کرنش-جابجائی.. 161

       5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162

       5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163

       5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167

       5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168

 

فصل ششم.

نتایج   171

6-1 نتایج حاصل از مدل انرژی-معادل. 172

   6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173

   6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181

   6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [. 182

   6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196

 

فصل هفتم.

نتیجه گیری و پیشنهادات 203

7-1 نتیجه گیری.. 204

7-2 پیشنهادات.. 206

 

چکیده

 

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری  مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و  محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند  بیشتر توسعه یافته اند.

فناوری نانو 

    نانو فناوری عبارت ازآفرینش مواد، قطعات و سیستم های مفید با کنترل آنها در مقیاس طولی نانو متر و بهره برداری از خصوصیات و پدیده های جدید حاصله در آن مقیاس می باشد. به عبارت دیگر فناوری نانو، ایجاد چیدمانی دلخواه از اتم ها و مولکول ها و تولید مواد جدید با خواص مطلوب است. فناوری نانو، نقطه تلاقی اصول مهندسی، فیزیک، زیست شناسی، پزشکی و شیمی است و به عنوان ابزاری برای کاربرد این علوم و غنی سازی آنها در جهت ساخت عناصر کاملاً جدید عمل می کند

ساختار نانو لوله‌های کربنی

    نانو لوله‌های کربنی (CNTs) یک نوع آلوتروپ کربن هستند که  اخیراً کشف شده‌اند. آنها به شکل مولکول استوانه‌ای هستند و خواص شگفت انگیزی دارند که آنها را برای بکارگیری در بسیاری  از  کاربردهای نانوفناوری، الکترونیک، اپتیک و حوزه‌های دیگر علم مواد مناسب می سازد. آنها دارای استحکام خارق العاده‌ای بوده، خواص الکتریکی منحصر به فردی دارند، و هادی کارآمدی برای حرارت هستند.

یک نانولوله عضوی  از  خانواده فلورن هاست، که باکی بال‌ها را نیز شامل می‌شود. فلورن‌ها خوشه‌ی بزرگی  از  اتم‌های کربن در قالب یک قفس بسته می‌باشند و  از  ویژگی های خاصی برخوردارند که پیش  از  این در هیچ ترکیب دیگری یافت نشده بودند. بنابراین، فلورن‌ها به طور کلی خانواده‌ای جالب توجه  از  ترکیب‌ها را تشکیل می‌دهند که به طور قطع در کاربردها و فناوری‌های آینده مورد استفاده وسیع قرار خواهند گرفت.

انواع نانولوله‌های کربنی

2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT)

    یک نانولوله‌ی تک دیواره  از  دو قسمت بدنه و درپوش با خواص متفاوت فیزیکی و شیمیایی تشکیل شده است. ساختار درپوش، مشابه یک فلورن کوچکتر همچون C60 می‌باشد. اتم‌های کربنی که به شکل پنج و شش ضلعی در کنار یکدیگر قرار گرفته‌اند، ساختار درپوش را می‌سازند. می‌توان به سادگی  از  قضیه‌ی اولر اثبات کرد که برای به دست آوردن یک ساختار قفسی شکل بسته  از  پنج ضلعی‌ها، به دو از ده پنج ضلعی نیاز  است. ترکیب یک پنج ضلعی و پنج شش ضلعی در اطراف آن، قوس لازم برای شکل‌گیری یک درپوش بسته‌ی گنبدی شکل را ایجاد می‌کند. قانون دوم، قانون پنج ضلعی مجزا می‌باشد که می‌گوید فاصله‌ی بین پنج‌ ضلعی‌ها روی پوسته‌ی فلورن جهت کاهش تنش سطحی و حصول یک قوس موضعی حتی المقدور نرم، به حداکثر ممکن می‌رسد تا ساختار پایدارتری را نتیجه دهد. کوچکترین ساختار پایداری که بدین نحو می‌تواند شکل گیرد مولکول C60 و بعد  از  آن مولکول C70 می‌باشد و به همین ترتیب فلورن‌های بزرگتر. خاصیت مشترک دیگر بین تمام فلورن‌ها این است که تمام آنها  از  تعداد زوجی  از  اتم‌های کربن تشکیل شده‌اند زیرا اضافه کردن یک شش ضلعی به یک ساختار موجود به معنای اضافه کردن دو اتم کربن می‌باشد

نانولوله‌ی کربنی چند دیواره (MWNT)

    نانولوله‌های کربنی چند دیواره  از  چند استوانه‌ی کربنی هم محور تو در تو ایجاد می‌شوند. نانولوله‌های چند دیواره را می‌توان به صورت دسته‌ای  از  نانولوله‌های هم مرکز با قطرهای متفاوت در نظر گرفت.

  • تروس یا حلقه‌ای

نانوتروس یک نانولوله‌ی کربنی است که به شکل یک حلقه خم شده است. نانوتروس‌ها خواص منحصر بفرد بسیاری دارند. مثلاً  مقدار مغناطیس آنها 1000 برابر بیشتر  از  آن است که برای برخی مواد دیگر انتظار می‌رود و بسیاری خواص دیگر همچون پایداری حرارتی و غیره که با شعاع حلقه و قطر لوله تغییر می‌کند،

  • فولرایت

فولرایت شکل بسیار فشرده‌ی نانولوله است. نانولوله‌های تک دیواره پلاریزه شده نانولوله ی کربنی تک دیواره، یک دسته ی از  فولرایت‌ها هستند که سختی آنها در حد الماس است

 

 

 

 

 

 

 


دانلود با لینک مستقیم


مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

دانلود پاورپوینت نانولوله های کربنی (از سنتزتا کاربرد)

اختصاصی از اس فایل دانلود پاورپوینت نانولوله های کربنی (از سنتزتا کاربرد) دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت نانولوله های کربنی (از سنتزتا کاربرد)


دانلود پاورپوینت نانولوله های کربنی (از سنتزتا کاربرد)
اگر قبول کنیم که روش‌های تولید به کمک فناوری نانو به دوران طلایی خود رسیده است باید نانولوله‌های کربنی را بچه‌های طلایی این دوران به شمار آوریم. خواص منحصر به فرد (مکانیکی- الکترونیکی- شیمیایی- مغناطیسی- ) این مواد رویایی موجب شده است که قابلیت‌های کاربردی زیادی برای آن ها به وجود آید. پیش‌بینی یک بازار 12 میلیارد دلاری در مدت 5 سال ( 2002تا 2007) حاکی از آن است نانولوله‌های کربنی تأثیر بیشتری از ترانزیستور در جامعه امروزی خواهند داشت. خبرنامه فناوری نانو در راستای رسالت مشخص خود، مطالعات مختلف وگسترده ای را در زمینه نانو لوله ها صورت داده و آن ها را به صورت خبر یا مقاله (در ماه نامه و سایت ستاد) در دسترس علاقه مندان قرار داده است. در تحقیق حاضر با بررسی تمامی مقالات و خبرهای منتشر شده در100 شماره پیشین خبرنامه، ضمن جمع‌بندی خلاصه ویژگی‌ها و موانع تولید نانولوله‌ها، روند حاکم بر این محصول از سنتز تا کاربرد به طور اجمالی ارائه شده است.
شامل 53 اسلاید powerpont

دانلود با لینک مستقیم


دانلود پاورپوینت نانولوله های کربنی (از سنتزتا کاربرد)

مقاله علمی ساخت غربال مولکولی کربنی توسط فرآیند دو مرحله ای انسداد روزنه های کربن فعال

اختصاصی از اس فایل مقاله علمی ساخت غربال مولکولی کربنی توسط فرآیند دو مرحله ای انسداد روزنه های کربن فعال دانلود با لینک مستقیم و پر سرعت .

مقاله علمی ساخت غربال مولکولی کربنی توسط فرآیند دو مرحله ای انسداد روزنه های کربن فعال


تحقیق درباره ساخت غربال مولکولی کربنی توسط فرآیند دو مرحله ای انسداد روزنه های کربن فعال

فرمت فایل : word (قابل ویرایش) تعداد صفحات : 26 صفحه

 

 

 

 

 

 

چکیده

در مقاله حاضر، یک روش جدید تهیه غربال های مولکولی کربنی ارائه گردیده که در آن از فرآیند دو مرحله ای رسوب گذاری کربن و انسداد روزنه ها بر روی پایه ای از جنس کربن فعال تجاری استفاده شده است. در این روش و در نخستین مرحله انسداد روزنه ها، از تجزیه حرارتی هیدروکربن های موجود در قیر قطران زغال سنگ استفاده گردید و در مرحله دوم برای کاهش بیشتر ابعاد روزنه ها تا مقدار مناسب، از تجزیه حرارتی بخار بنزن استفاده شد. نتایج نشان داده اند که در مرحله تجزیه حرارتی هیدروکربن ها، یک ساختار متخلخل یکنواخت با ابعاد روزنه هایی حدود Å 5 در کربن بوجود می آید و در مرحله دوم، قطر روزنه ها در محصول به حدود Å 4 کاهش می یابد. این عمل، جداسازی سینتیکی اکسیژن از نیتروژن توسط ماده متخلخل بوجود آمده را امکان پذیر می سازد. همچنین در بررسی های به عمل آمده، اثر دما و زمان تجزیه حرارتی بخار بنزن نیز به منظور یافتن شرایط بهینه، مورد مطالعه قرار گرفته است.

 

مقدمه

غربال مولکولی کربنی[1] ماده ای است متخلخل با ساختمان آمورف که به شکل صفحات در هم پیچیده شده بوده و متوسط قطر روزنه ها در آن نزدیک به اندازه مولکول های جذب شونده می باشد [1].  جداسازی مولکول ها در غربال های مولکولی کربنی بر اساس اختلاف در سرعت نفوذ آنها به داخل روزنه های ریز[2] و یا به عبارت دیگر، سرعت جذب آنها می باشد. به کمک ویژگی فوق می توان از این مواد برای جداسازی مولکول هایی با ابعاد نزدیک به یکدیگر استفاده نمود.

     غربال های مولکولی کربنی به دلیل ماهیت شیمیایی و همچنین داشتن ساختار منحصر به فرد، در مقایسه با دیگر غربال های مولکولی نظیر زئولیت ها، مزایای قابل توجهی دارند که موجب می شوند تا بتوان از آنها در کاربردهای خاص و ویژه بهره جست. این مزایا عبارت از آبگریزی بالا، مقاومت شیمیایی در برابر اسیدها و بازها، پایداری ساختار کربنی در دمای بالا و در محیط های خنثی، دارا بودن روزنه های صفحه ای شکل (که امکان جداسازی مولکول های خطی از مولکول های شاخه دار را فراهم می سازند) و همچنین هزینه پایین ساخت می باشند.

     غربال های مولکولی کربنی در حال حاضر برای جداسازی مخلوط های گازی متعددی به کار برده شده اند که از جمله آنها می توان به جداسازی هوا (اکسیژن از نیتروژن)، متان از دی اکسید کربن، متان از گزنون، اتان از اتیلن، پروپان از پروپیلن و جداسازی هیدروژن از مخلوط گازها اشاره نمود [2, 3]. امروزه کاربرد غربال های مولکولی کربنی برای جداسازی هوا به خوبی توسعه داده شده و با استفاده از این جاذب ها در فرآیند جذب نوسانی با فشار(PSA[3])، می توان جریان نیتروژنی با خلوص 95  الی 7/99 درصد را از هوا تولید کرد.


دانلود با لینک مستقیم


مقاله علمی ساخت غربال مولکولی کربنی توسط فرآیند دو مرحله ای انسداد روزنه های کربن فعال

(آشنایی با لمپس) - شبیه سازی نانولوله کربنی (Carbon Nanotube) با نرم افزار لمپس (LAMMPS) به روش دینامیک مولکولی

اختصاصی از اس فایل (آشنایی با لمپس) - شبیه سازی نانولوله کربنی (Carbon Nanotube) با نرم افزار لمپس (LAMMPS) به روش دینامیک مولکولی دانلود با لینک مستقیم و پر سرعت .

(آشنایی با لمپس) - شبیه سازی نانولوله کربنی (Carbon Nanotube) با نرم افزار لمپس (LAMMPS) به روش دینامیک مولکولی


(آشنایی با لمپس) - شبیه سازی نانولوله کربنی (Carbon Nanotube) با نرم افزار لمپس (LAMMPS) به روش دینامیک مولکولی

(آموزش lammps) در این شبیه سازی یک نانولوله کربنی با استفاده از نرم افزار vmd ساخته می شود و از روی آن دیتا فایل ایجاد می گردد. پتانسیل مورد نظر برای مدل کردن بر هم کنش بین اتمهای کربن ترسوف (Tersoff) می باشد. طول فیم ۲۱ دقیقه و به فرمت mp4 است. کیفیت فیلم HD است.این آموزش توی لینوکس ابونتو تهیه شده و قابل انجام است.  تاریخ انتشار ۱۵ فروردین ۱۳۹۵


دانلود با لینک مستقیم


(آشنایی با لمپس) - شبیه سازی نانولوله کربنی (Carbon Nanotube) با نرم افزار لمپس (LAMMPS) به روش دینامیک مولکولی