اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها

اختصاصی از اس فایل دانلود مقاله شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها


دانلود مقاله شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها

شرح انواع مختلف پیچها:

در بیشتر واحدهای صنعتی از پیچ ها برای سوار کردن و اتصال قطعات روی یکدیگر و نیز تنظیم دستگاههای صنعتی و یا جهت انتقال حرکت استفاده می شود. در کمتر دستگاهی است که از پیچها استفاده نمیشود بهمین دلیل است که اهمیت آنها در صنعت بسیار زیاد میباشد. مواردیکه از پیچها استفاده میشود عبارتند از:

ماشینهای ابزار، انواع گیره ها، وسائط نقلیه، ابزرار و ادوات جنگی و کشتی ها، هواپیماها، ساختمانهای فلزی، میز و صندلی، ماشینهای چاپ و ریسندگی و بافندگی.

تراشیدن پیچها بوسیله ماشین تراش و یا سایر دستگاههای دیگری نیز صورت میگیرد که البته برحسب نوع دقت و اندازة آن در دستگاه مخصوص بخود تراشیده یا ساخته میشوند.

شکل (142) تراشیدن پیچ را بوسیله ماشن تراش نشان میدهد که با داشتن مشخصات کامل پیچ و با در نظر گرفتن اصول پیچ تراشی و مراحل آن میتوان آنرا تراشید. ولی بطور کلی تراشیدن پیچ با ماشین تراش بدون شک یکی از مشکلترین عملیاتی است که انجام میگیرد. منظور از تراشیدتن پیچ ایجاد شیار مارپیچی با فرم دندانه و زاویه مشخصی روی محیط استوانه ای ایجاد میگردد میباشد. علاوه بر آن نیز میتوان همین عمل را در داخل سوراخهای داخلی انجام داد.

شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها:

قبل از اینکه به تراش پیچها اقدام نمائیم لازم است که اجزاء مختلف آنرا بشناسیم برای این منظور بطور خلاصه بشرح هر یک بصورت زیر میپردازیم.

  • قطر خارجی Mujor D– بزرگنرین قطر پیچ و یا مهره را قطر خارجی آن گویند که عبارت است از اندازه سر دندانه تا سر دندانه مقابل که آنرا با حرف OD نمایش میدهند.
  • ارتفاع یا گودی دندانه Depth of T– ارتفاع دندانه عبارت است از فاصله قائم میان سر دندانه تا ته دندانه پیچ که آنرا با علامت h مشخص مینمایند.
  • قطر داخلی Minor D که کوچکترین قطر پیچ و یا مهره را قطر داخلی گویند که اندازه آن عبارت است از فاصله ته دندانه تا ته دندانه مقابل آن یا بعبارت دیگر برابر است با تفاضل قطر بزرگ دو برابر ارتفاع دندانه که با حرف I نشان میدهند. شکل (143) اجزاء مختلف پیچ را نشان میدهد.
  • تعداد دندانه Nimber of T.– همانطور که در شکل پیدا است تعداد دندانه عبارت است از تعداد دندانه در یک اینچ روی محیط در طول پیچ که برای تعیین آن خط کش یا کلیس را روی پیچ مطابق شکل قرار داده و سپس دنداغنه های بین یک اینچ را میشماریم که معمولاً آنرا با حرف N نمایش میدهیم. علاوه بر آن میتوان با طرق مختلف دیگری آنرا اندازه گیری نمود که عبارت از استفاده از شابلن باین ترتیب که شابلن مورد نظر را روی دندانه ها قرار داده و در صورتیکه نوری از بین دندانه ها نشاهده نشد تعداد دندانه هائیکه روی شابلن نوشته شده است همان تعداد دندانه پیچ خواهد بود.
  • گام یا تقسیم دندانه Pitch– فاصله نوک یک دنده تا دنده مجاور و یا فاصله یک نقطه از ته دنده تا نقطه مشابه از ته دنده دیگر را گام یا تقسیم دنده گویند که با علامت P مشخص میکنند.
  • تارک یا پهنای سر دنده Crest– سر دندانه پیچ های یکنواخت ملی دارای سطح باریکی است که طرفین یک دندانه را بهم متصل میسازد با f علامت گذاری شده است.
  • پهنای ته دندانه root– کف شیتر بین دو دندانه محور که طرفین آنها را بهم متصل میسازد پهنای ته دندانه گویند که با علامت C یا R نمایش میدهند.
  • فطر متوسط (قطر میانه) پیچ Pitch D.– قطر میانه عبارت است از استوانه فرضی که دنده های پیچ را در محلی قطع میکند که در آن قسمت هر دندانه مساوی پهنای شیار مجاور آنست و یا بعبارت دیگر عبارت است از تفاضل قطر بزرگ و ارتفاع دنده که با علامت DP و یا E نمایش داده میشود.
  • گام محوری پیچ Lead– گام محوری پیچ عبارت است از فاصله ایکه پیچ در داخل مهره یا مهره روی پیچ در یک دور گردش این گام درست شبیه گام دندانه میباشد. شکل (146) – گامهای محوری متعددی را نشان میدهد. قسمت بالا یک نوع پیچ یک راهه که دارای یک گام میباشد معرفی مینماید.
  • فرمول لازم برای محاسبه گام محوری بصورت زیر نوشته میشود.
  

                                      1

گام محوری ــــــــــــــــــــــــــــــــــــــــــ L=Lead=

                   تعداد دندانه در یک اینچ

 

 

مثلا مقدار گام محوری که همان گام دندانه میباشد برای پیچ 9 دنده در یک اینچ برابر است با               

ولی در یک پیچ دو راهه که دارای 9 دنده در یک اینچ میباشد تعداد گام آن برابر است با           

زاویه دندانه: Tread A

زاویه دندانه عبارت است از زاویه ایکه بین دو سطح شیب دار دندانه بوجود می آید و مقدار آن در پیچهای میلیمتری و آمریکایی و یکنواخت ملی 60 درجه و در پیچهای ویتورت 55 درجه می باشد.

10- زاویه مارپیچ Hexil A – زاویه مارپیچ عبارت از زاویه ای که دنده مارپیچی در هر نقطهع واقع بر محیط استوانه ای بقطر میلانه پیچ با صفحه عمود بر محور پیچ می سازد می باشد که معمولا با علامت  مشخص می کنند.

  • منحنی مارپیچ – اگر کاغذی را بشکل مثلث قائم الزاویه ABC برید بطوریکه BC ارتفاع مثلث برابر گام پیچ و ضلع AC از مثلث برابر محیط خارجی پیچ یعنی  و یا برابر محیط متوسط یعنی  درنظر بگیریم وتر AB از مثلث قائم الزاویه منحنی پیچ را نشان می دهد. در این صورت اگر مثلث مذکور را حول پیچ یا استوانه مورد نظر که محیط خارجی یا محیط متوسط برابر  و یا  باشد به پیچیم بطوری که AC روی محیط استوانه قرار گیرد وتر مثلث قائم الزاویه حول استوانه مارپیچ پیچیده می شود که از دو نقطه B و C روی طول استوانه در یک امتداد قرار گرفته و فاصله بین B و C گام پیچ را نشان می دهد. و نیز زاویه بین وتر AB وضع مثلث AC را زاویه مارپیچ گویند که مقدار آن از روابط زیر بدست می آید شکل زیر مطلب را روشن تر می سازد.

تانژانت زاویه مارپیچ

ولی چون دقت پیچ ها را در محیط متوسط (قطر متوسط) در نظر می گیرند در این صورت برای محاسبه زاویه مارپیچ می توان بطریق زیر عمل نمود.

تانژانت زاویه مارپیچ

مثال – مطلوب است محاسبه زاویه مارپیچ پیچ

ارتفاع دندانه            

گام دندانه                                    

قطر متوسط پیچ یا

انواع پیچها و موارد استفاده هر یک:

در حالت کلی پیچها بر دو نوع می باشند:

  • پیچهای مثلثی
  • پیچهای ذوذنقه ای

که در این مقوله فقط به انواع پیچهای مثلثی می پردازیم.

پیچهای مثلثی عموماً بمقدار زیادی در اتصال قطعات بکار می روند بخصوص پیچهائیکه بوسیله ماشینهای تراش در کارگاه ماشینهای ابزار تولید می شوند. و نیز برای استاندارد کردن پیچها بیشترین تحقیقات و مطالعات صورت گرفته است. اندازه های پیچهای یکنواخت و ملی دنده درشت و دنده ریز و خیلی ریز می باشد که این نوع پیچها را با زاویه 60 درجه در شکل (148) مشخص نموده است سر دندانه آنها تخت و ته دندانه گرد در نظر گرفته شده که معمولاً پیچهای سرتخت در پیچهای آمریکائی و سرگرد در پیچهای انگلیسی مورد استفاده قرار میگیرند.

انواع پیچها از لحاظ شکل دندانه:

  • پیچهای استاندارد یکنواخت آمریکائی
  • پیچهای مثلثی نوک تیز v.thread
  • پیچهای شماره ای
  • پیچهای لاونهرز
  • پیچهای لوله
  • پیچهای مثلثی انگلیسی (پیچهای ویت ورث)
  • پیچهای اتحادیه مهندسین انگلیسی

شامل 25 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله شرح اجزاء مختلف پیچ و طریقه تراشیدن آنها

دانلود پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر

اختصاصی از اس فایل دانلود پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر


دانلود پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 47

 

پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر

استاندارد  KES  D – C  65 

 پنج دسته کلی (1- عملکردی ،2- سختی و قدرت ، 3- دوام ، 4- مقاومت جوی ، 5- صدا ) آزمونهای بوستر را تشکیل می دهند . در این پروژه به آزمونهای عملکردی خواهیم پرداخت و سعی خواهیم نمود زیر آزمایشهای این گروه را تا حد امکان تشریح نموده و هدف از انجام هر یک را به اختصار توضیح دهیم . قبل از وارد شدن به مبحث فوق ابتدا اصطلاحاتی را که در متون استاندارد مورد استفاده قرار گرفته است را عنوان می کنیم :

میله فشار (Pushrod)  : میله خروجی بوستر است که وظیفه انتقال نیرو به پمپ ترمز را دارد .

میله ترمز (Operatingrod) : میله ورودی بوستر که به پدال ترمز متصل است و وظیفه انتقال نیرو به بوستر را دارد .

پیشروی مؤثر (Effective   stroke) : میزان پیشروی میله فشار که حداقل می بایست به اندازه حداکثر پیشروی پیستونهای پمپ ترمز برای رسیدن به حداکثر فشار خروجی باشد.

نیروی نهایی عملکرد (Full  loadworking point) : نقطه ای است که بیشترین نیروی خروجی به واسطه عملکرد بوستر به دست می آید . از این نقطه به بعد عملاً نقش بوستر حذف شده و نسبت تغییرات نیروی خروجی به تغییرات نیروی ورودی تقریباً برابر یک خواهد بود . این نقطه را Vacum Run – Outpoint  نیز می گویند . زیرا خلاء از بوستر کاملاً خارج شده است .

انجام آزمونهای عملکردی اغلب برای اطمینان از صحت عملکرد و نیز سلامت محصول بوده لذا اکثراً در انتهای خط مونتاژ و به طور صد در صد بر روی محصولات و یا قبل از انجام آزمونهای طولانی مدت دوام و یا سختی و قدرت انجام می گیرند .

پیشروی مؤثر میله فشار (Effective  stroke  of  push rod)  : برای رسیدن به حداکثر فشار خروجی در پمپ ترمز می بایست پیستونها حداکثر کورس خود را طی نمایند .تغذیه این مقدار پیشروی به وسیله میله فشار صورت می پذیرد پس میله فشار باید حداقل به میزان حداکثر کورس پیستونهای پمپ ترمز .

قابلیت پیشروی داشته باشد . این آزمون برای حصول اطمینان از این قابلیت انجام می گردد به گونه ای که پس از ایجاد خلأ mmhg 10+ـ500 در بوستر نیروی معادل kgr50 به میله ترمز اعمال نموده و سپس میزان حرکت میله فشاراندازه گیری می شود.

لقی حرکت میله ترمز (Operating  rod  play  stroke) : برای اینکه خلاصی حرکت میله ترمز برای رسیدن به یک نیروی خروجی در محدوده مجاز باشد . این آزمون انجام می گردد. روش انجام آن بدین گونه است که ابتدا خلأ mmhg 10+ـ500 را به بوستر وصل نموده و نیرویی مععادل kgf 2 به میله فشار وارد می کنیم (در این هنگام هیچگونه نیروی ورودی به میله ترمز اعمال نشده است ) سپس به میله ترمز به اندازه ای نیرو وارد می شود که نیروی خروجی kgf 5 قرائت گردد. در این هنگام پیشروی میله ترمز اندازه گیری می شود .این مقدار می بایست در بیشترین اندازه خود (mm)  7/0 باشد.

نشتی هوا (Air  tightness ) :

این آزمون در وضعیت «بدون عملکرد» و «عملکرد» انجام می شود .

همانطور که می دانید بوستر محفظه ای است که توسط دیافراگم به دو قسمت تقسیم شده است . هنگامی که بوستر هیچگونه عملکردی ندارد این دو قسمت با هم در ارتباط بوده و خلأ ایجاد شده در هر قسمت با هم در ارتباط بوده و خاأ ایجاد شده در هر دو قسمت از بوستر به یک میزان است .

اطمینان از اینکه این دو محفظه بوستر با فضای خارج هیچگونه ارتباطی ندارد امری ضروری است . لذا در حالت بدون عملکرد خلأ mmHg 10+ـ500 را در بوستر ایجاد نموده و پس شیر ارتباطی منبع خلأ با بوستر قطع می شود . میزان افت خلأ را پس از 15 ثانیه در بوستر اندازه گیری می کنیم . این میزان می باید حداکثر mmHg 25 باشد.

در حالت عملکردی ، ارتباط این دو محفظه با هم قطع شده و محفظه اول (محفظه کاری) با اتمسفر ارتباط برقرار می کند ؛ اختلاف فشار به وجود آمده در دو محفظه بوستر ، عمل تقویت را انجام می دهد . پس اطمینان از قطع بودن ارتباط دو محفظه در حالت عملکرد نیز اهمیت داشته ، لذا برای حصول این اطمینان خلأ mmHg 10+ـ500 را به بوستر متصل کرده و پس از قرار دادن ترمز در موقعیت 10 +ـ70 درصد پیشروی مؤثر با اعمال نیروی بیشتر از نیروی Full load ارتباط منبع خلأ با بوستر قطع می شود . میزان افت خلأ پس از مدت زمان 15 ثانیه حداکثر mmHg 25 مجاز است .

مشخصات ورودی و خروجی  (Input/output chartacteristic) :

در این آزمون که یکی از مهمترین آزمونهای این بخش است .به ارزیابی خصوصیات عملکردی بوستر می پردازیم . این آزمون به منظور بدست آوردن یک منحنی رفتاری و عملکردی از بوستر در طول پیشروی مؤثر انجام می شود و می بایست به طور پیوسته و با نرخ پیشروی ثابت ترسیم گردد. بدیهی است این منحنی به دلیل ثابت نبودن نرخ پیشروی بر روی اتومبیل و با نیروی متغیر ورودی قابل دستیابی نخواهد بود .

بوستر را روی پایه ها قرار داده و بستهای پایه ها رابا گشتاور مناسب ، سفت و محکم می بندیم و مطمئن می شویم که راستای اعمال نیروی ورودی کاملأ در جهت محور بوستر و در راستای میله فشار قرار گرفته باشد . مکانیزم به گونه ای طراحی می شود که بوستر بعد از رسیدن به پیشروی مؤثر ، کاملاً به موقعیت اولیه خود باز گردد . نیروسنجی برای اندازه گیری نیروی ورودی(N9000-0)در بین مکانیزم اعمال نیرو و میله ترمز و همچنین نیروسنجی برای اندازه گیری نیروی خروجی (N9000-0 ) پس از میله فشار و در جلوی بوستر قرار می گیرد دقت اندازه گیری 5/0 درصد است .

همچنین یک وسیله اندازه گیری خطی به منظور مشخص نمودن میزان پیشروی نیز در دستگاه تعبیه شده است . سپس بوستر به وسیله یک لوله که بر سر راه آن یک شیر کنترل ، یک گیج خلأ و یک شیر قطع و وصل وجود دارد به منبع خلأ وصل می گردد . با راه اندازی دستگاه و اعمال نیروی ورودی به میله ترمز تغییرات نیروی ورودی و خروجی به صورت یک منحنی برای هر بوستر ترسیم می گردد .

در این منحنی که رفتار بوستر در یک سیکل رفت و برگشت مشخص گردیده نقاط مختلفی وجود دارد که هر کدام بیانگر رفتاری از بوستر است این نقاط به شرح ذیل هستند :

APPLY  :

منحنی رفتبوستر که در واقع همان منحنی رفتاری بوستر است .

Release :

برگشت کامل منحنی و بوستر به حالت اولیه خود بدون اینکه نیروی ورودی بر روی میله فشار باشد .

Cutin :

نیروی ورودی مورد نیاز برای عمل کردن دریچه سوپاپی که به منظور کنترل نئوماتیکی بوستر تعبیه شده تا تولید یک نیروی خروجی .

این نقطه را Working stating point   نیز می نامند .

Vacuum run outline   :

این خط با دو یا چند نقطه بر روی منحنی ورودی /خروجی تعریف می شود که در این منطقه از منحنی اثر خلأ در بوستر از بین رفته و لذا نسبت نیروی خروجی به نیروی ورودی نیز تغییر می کند به نحوی که دیگر نسبت تغییرات نیروی خروجی به تغییرات نیروی ورودی برابر یک خواهد بود .


Vacuum run out point :

از تقاطع دو خط vacuum run out  line و power slop  به دست می آید این نقطه که به Full load  working point   نیز معروف است که در آنجا بیشترین نیروی خروجی به ازای نیروی کمکی بوستر به دست می آید .

Initial  rise :

این نقطه که Jump up  نیز نامیده می شود از تقاطع خط power slope  و خط عمود بر Cutin به دست می آید .در واقع در این نقطه ارتباط بین دو محفظه بوستر با هم قطع شده و محفظه اول که در سمت پدال ترمز قرار دارد با اتمسفر ارتباط برقرار می کند .ارتباط ناگهانی محفظه کاری با اتمسفر و اختلاف فشار بین دو محفظه بوستر موجب پرش ناگهانی و ایجاد نیروی خروجی تا نقطه initial  rise  می گردد.

Hysteresis :

اختلاف تغییر نیروی خروجی به ازای تغییر نیروی ورودی .این عملکرد در بالای Initial rise و پایین تر از Vacuum run out point است .

Return cut – out  :

نیرو یوردی که در آن نیروی خروجی کاهش یافته و به صفر می رسد .

برای مدل های مختلف بوستر ، اعداد و ارقامی برای هر یک از موارد بالا به عنوان استاندارد طراحی مطرح شده و محدوده عملکرد صحیح بوستر مشخص شده است . لذا با توجه به مدل بوستر و منحنی به دست آمده صحت کارکرد بوستر معین         می گردد. در روبرو نمونه ای ا زمنحنی یک بوستر سالم آورده شده است .

زمان برگشت (Return characteristic) :

در این آزمون زمان برگشت میله ترمز به حالت اولیه اندازه گیری می شود . با این آزمون عکس العمل فنر و مکانیزم بوستر برای برگشت به حالت اولیه و نیز باز بودن مجاری هوا در بدنه سوپاپ کنترل می گردد زیرا در اثر بسته بودن مجاری ، عمل مکش در یکی از محفظه های بوستر رخ داده و مانع برگشت سریع میله ترمز و یا اهرم پدال خواهد شد. روش تست به این ترتیب است که پس از اتصال خلأ به بوستر ، نیرویی بیش از نیروی Fulload به میله ترمز وارد کرده و ناگهان میله ترمز را رها می کنیم . زمان بازگشت میله ترمز به موقعیت اولیه ، اندازه گیری می گردد . این زمان می بایست از 5/1 ثانیه کمتر باشد.

عملکرد در دمای پایین (Low temperture  working) :

در این آزمون هدف ، سنجش عملکرد بوستر و خصوصاً قطعات لاستیکی آن در برودت و سرما است . ابتدا بوستری که آزمونهای عملکردی قبلی را به خوبی گذارنده باشد پس از ثبت نتایج آن در داخل یک محفظه سرد با دمای c2+ـ30- (در بعضی از استانداردها c  3+ـ40- نیز ذکر شده ) و به مدت 16 ساعت قرار داده سپس در همان دما آزمونهای نشتی و I/O  بر روی آن انجام می گیرد با این توضیح که Servo ratio و Initial rise می توانند 80 درصد یا بیشتر از مقدار اندازه گیری شده در دمای محیط باشند.

عملکرد در دمای بالا (High temperature Working)  :

در این آزمون نیز عملکرد بوستر و خصوصاً قطعات لاستیکی آن در گرما حرارت ، مورد ارزیابی قرار می گیرد . شرایط آزمون دمای c 2+ـ120 و مدت 3 ساعت برای یک بوستر سالم است . پس از تست نیز مطابق آزمون برودت کلیه آزمونهای نشتی با بار و بدون بار و I/O به روی بوستر و در همان محفظه گرم انجام می گیرد . نقاط Servo ratio و Initiale می توانند 80 درصد یا بیشتر از مقدار اندازه گیری شده در دمای محیط باشند.

تحلیلی بر آزمونهای مجموعه بوستر

استاندارد KES   D-C  65    

از آزمونهای بیان شده در این گروه ، نشتی هوا و مشخصات ورودی و خروجی بود و عنوان شد که در آزمون ورودی و خروجی ، رفتار بوستر توسط نموداری که بیانگر ورودی است مورد ارزیابی قرار می گیرد و در آزمون نشتی هوا ، افت خلاء در 70% پیشروی میله ترمز اندازه گیری می شود .

از نقایص آزمون نشتی می توان به این نکته اشاره کرد که افت خلاء در حین عمل ترمزگیری محاسبه نشده و مورد ارزیابی قرار نمی گیرد در حالیکه بعضاً مشاهده         می گردد، نمودار رفتاری بوستر در حین عملکرد با پرسشهای ناگهانی همراه بوده که اکثراً بدلیل بروز نشتی در طول پیشروی میله ترمز و یا میله فشار اتفاق افتاده است .

همانطور که گفته بودیم بوستر ترمز محفظه ای است که بین پدال به دو قسمت تقسیم شده است . این دو قسمت را محفظه کاری و محفظه خلاء نامیده ایم .

وقتی که هیچ فشاری به پدال ترمز اعمال نشده است ، شیر مکش هوا بسته و شیر خلاء باز بوده و در این حالت هر دو محفظه خلاء و کاری دارای فشار یکسانی در حدود Kpa70 پایین تر از فشار اتمسفر هستند.

البته این در حالتی است که موتور اتومبیل روشن بوده تا بواسطه جابجایی پیستونها هوای داخل بوستر از راه منیفلید و لوله ورود خلاء تخلیه گردد.

زمانی که به پدال ترمز فشار اعمال می گردد ، شیر خلاءبسته شده و شیر مکش هوا باز می شود که نتیجه این عمل قطع ارتباط دو محفظه با هم و نیز ارتباطی محفظه کاری با اتمسفر را موجب می گردد . در اثر این ارتباط و اختلاف فشار موجود هوای محیط بداخل محفظه کاری هجوم آورده و نیرویی را بر سطح پیستون اعمال می کند .

نیروی رانش و کششی که در اثر اختلاف فشار بین دو محفظه بر سطح پیستون اعمال می گردد همان نیروی تقویتی مورد نظر بوده که در نهایت موجب پیشروی آسانتر میله و نیز فشار سازی پمپ ترمز خواهد شد تا اعمال ترمزگیری با صرف نیروی کمتری از جانب راننده انجام پذیرد . حال اگر مجرایی به غیر از شیر مکش هوا برای ارتباط با اتمسفر وجود داشته باشد چه رخ خواهد داد ؟

جهت دست یابی به پاسخ این سؤال دو آزمون طراحی شده بطوریکه برروی یک بوستر و در هر دو طرف آن شیری تعبیه شد.

در آزمون اول شیری را که در دو طرف محفظه کاری قرار داشت در حین عملکرد و در حدود میانه کورس برای لحظه کوتاهی باز کردیم تا هوای محیط بتواند از راه دیگری بداخل بوستر جریان یابد .

 

همانطور که از نمودار مشخص است نیروی ورودی برای یک لحظه کاهش یافته ولی همچنان افزایش نیروی خروجی را شاهد هستیم . این بدان معنی است که راننده برای یک لحظه زیر پای خود را خالی حس می کند . حال چقدر این میزان نشتی بیشتر باشد احساس خالی شدن زیر پانیز بیشترخواهد شد بطوریکه گاهی اوقات مشاهده شده است پدال با اندک نیرویی تمامی کورس را به خودی خود طی نموده و خودرو ناگهان متوقف می شود.

در آزمون دوم شیر تعبیه شده در قسمت محفظه خلاءرا تقریباً در میانه کورس برای لحظه کوتاهی باز و بسته می کنیم .

همانطور که مشخص است بر خلاف حالت قبلی برای لحظه ای نیروی ورودی افزایش یافته ولی نیروی خروجی بدون تغییر و ثابت مانده است . این بدین معنی است که راننده در هنگام ترمز گرفتن با مقاومت پدال ترمز مواجه شده و بنابراین برای گرفتن ترمز باید نیروی بیشتری را صرف کند . در این حالت به اصطلاح ترمز زیر پای راننده چوب شده است .

این حالت به این دلیل رخ می دهد که برای یک لحظه اختلاف فشار بین دو محفظه کاهش یافته و ضریب تقویت نیز کاهش می یابد . گاهی اوقات مشاهده شده است که بدلیل بروز نشتی بیش از حد در محفظه خلاء فشار در این قسمت بیشتر از فشار محفظه کاری بوده و در نتیجه تبدیل به یک نیروی مقاوم در برابر نیروی پای راننده و در نتیجه پیشروی پیستون شده است .

خالی کردن ترمز و یا چوب شدن آن به عوامل دیگری نیز در سیستم ترمز می تواند بستگی داشته باشد که در آینده به این عوامل نیز اشاره خواهیم کرد.

کاربرد ابزارهای بهبود کیفیت Desing  Of  Experiments :

تعریف طراحی آزمایشات :

DOE عبارت است از ایجاد تغییرات هدفمند در ورودیها یا مشخصه های یک فرآیند به منظور آزمایش و مشاهده تغییرات حاصل در خروجیها یا نتایج.

 در واقع یک فرآیند ،ترکیب ماشینها ، مواد ، روشها ، انسان ، محیط و اندازه گیریهای مربوطه تشکیل شده که در نهایت منجر به تولید یک محصول یا خدمت می گردد . طراحی آزمایش یک راهکار علمی است که به شما این امکان را می دهد تا در زمینه درک بهتر از فرآیند ،دانش بیشتری (به صورت سیستماتیک) کسب نموده و بر چگونگی اثر مشخصه های ورودی بر نتایج ، احاطه پیدا کنید .

اجرای DOE  بر روی بوستر ترمز در شرکت صنعت و هنر

 آزمونهای عملکرد (PERFORMANCE) بر روی مجموعه بوستر ترمز که شامل نه آزمایش است ، زمینه را برای آزمونهای مراحل بعد (سختی و قدرت ، دوام ، مقاومت جوی و صدا) فراهم می سازند . در بین آزمونهای عملکرد ،آزمایش input/out put characteristic بسیار حائز اهمیت است . زیرا پس از انجام آن خصوصیات بوستر مشخص می گردد .در انجام این آزمایش دستگاه I/O با اعمال نیروی یکنواخت به میله ترمز (operating rod) به عنوان نیروی ورودی و اندازه گیری نیروی خروجی بوستر ، منحنی (ورودی - خروجی) رفتار بوستر ترمز را رسم می نماید.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود پروژه اجزاء ماشین - تحلیلی بر آزمونهای مجموعه بوستر

تحقیق مطالعه اثرات تنش خشکی اجزاء عملکرد گندم پاییزه

اختصاصی از اس فایل تحقیق مطالعه اثرات تنش خشکی اجزاء عملکرد گندم پاییزه دانلود با لینک مستقیم و پر سرعت .

تحقیق مطالعه اثرات تنش خشکی اجزاء عملکرد گندم پاییزه


تحقیق مطالعه اثرات تنش خشکی اجزاء عملکرد گندم پاییزه

دسته بندی : فنی و مهندسی  _ کشاورزی و زراعت 

فرمت فایل:   doc ( قابلیت ویرایش ) 

حجم فایل:  (در قسمت پایین صفحه درج شده)

تعداد صفحات :  43

کد محصول : 1KZ

 

 

 

 

فهرست متن Title : 

 

قسمتی از محتوای متن :

 

چکیده

چهار رقم گندم پاییزه تحت شرایط نرمال و تنش خشکی در شهرستان ایرانشهر قرار گرفته و مطالعه شدند. آزمایش به صورت کرتهای خرد شده در پایه بلوک های کامل تصادفی با سه تکرار انجام شد، صفات مورد مطالعه در مزرعه عبارت بودند از: عملکرد دانه عملکرد بیولوژیکی ارتفاع بوته وزن هزاران دانه طول سنبله شاخص برداشت، تجزیه آماری با استفاده از نرم افزار Mstactc انجام گرفت و برای تفکیک جزئیات همبستگی بین متغیرها از روش تجزیه علیت استفاده شد

خشکی یکی از ویژگیهای مهم جغرافیایی در کشور ایران می باشد و راه گریزی برای تغییر این پدیده وجود ندارد از طرف دیگر منابع آب، انرژی و عرضه مواد غذایی روز به روز اهمیت بیشتری پیدا می کند بنابراین لازم است بجای تاکید بر معایب خشکی به فکر مقابله با آن بود و به دنیال راه حل برای جلوگیری از صدمات آن گشت به کارگیری روشهایی مانند: افزایش کارآیی استفاده از آب با استفاده از روش های:

1-انتقال صفات مفید و کاراتر از نظر استفاده آبی به ارقام پرمحصول

2-اصلاح ارقام با کارآیی آب بیشتر

 

تنش خشکی بر عملکرد گیاه اثرات وسیعی دارد و مهمترین اثر تنش خشکی بر گیاه کاهش سرعت رشد و نمو کاهش ارتفاع ساقه و کاهش رشد برگ ها می باشد (چابوک 1375).

طول پانیکول: در جدول شماره 2 تفاوت معنی داری برای طول پانیکول در سطوح تنش در سطح 05/0 ملاحظه می شود، همچنین بین ژنوتیپها نیز در سطح 05/0 تفاوت معنی دار است ولیکن اثر متقابل ژنوتیپ تنش اختلاف معنی داری ندارد، بیشترین طول پانیکول در سطوح آبیاری نرمال ملاحظه می گردد

 

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید بعد از پرداخت، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

همچنان شما میتوانید قبل از خرید با پشتیبانی فروشگاه در ارتباط باشید، و فایل مورد نظر خود را اخذ نمایید.


دانلود با لینک مستقیم


تحقیق مطالعه اثرات تنش خشکی اجزاء عملکرد گندم پاییزه

دانلود تحقیق کامل درمورد آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

اختصاصی از اس فایل دانلود تحقیق کامل درمورد آشنایی با نیروگاه حرارتی و اجزاء مختلف آن دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد آشنایی با نیروگاه حرارتی و اجزاء مختلف آن


دانلود تحقیق کامل درمورد آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 182

 

آشنایی با نیروگاه حرارتی و اجزاء مختلف آن :

بویــلر

  • بویلر در نیروگاه وظیفه تامین بخار جهت چرخش توربین را به عهده دارد و در اصل مانند یک دیگ بخارمی باشدبا این تفاوت که در داخل بویلر و در امتداد دیواره های آن لوله های متعددی قرار گرفته اند و آب پس از ورود به بویلر در قسمت بالایی آن وارد محفظه ای به نام درام شده و سپس از آنجا واز سمت پائین بویلر وارد لوله های بویلر (Water Wall )می گرددو در آنجادر اثر حرارتی که ناشی از سوختن مشعلهای داخل بویلر که در سه ردیف و در دو طرف دیواره های بویلر قرار دارند می باشد آب به بخار تبدیل شده و مجدداً وارد درام می گردد و در درام آب و بخار از یکدیگر جدا شده وآب مجدداً وارد لوله های بویلر و بخار وارد لوله های دیگری به نام سوپر هیتر می گردد که کار داغتر کردن بخار و رساندن دمای بخار به 540درجه سانتیگراد را به عهده دارند و سپس بخار داغ پس از رسیدن به دمای 540 درجه سانتیگراد وارد توربین می گردد,بویلر نیروگاه شازند به طور کلی از نوع درام دار و تحت فشار می باشد که قادر است هم با سوخت گاز طبیعی و هم با سوخت مازوت کار کندو بخار با دمای 540 درجه سانتیگراد و فشار 167Bar بویلر را ترک می کند.
  • درنیروگاه های برق فسیلی و نیز نیروگاه های هسته ای از مولدهای بخار استفاده می شود در مولد های بخار بسیار پیشرفته بخار فوق گرم فشار بالا (mpa5/16 تا mpa 24) تولید می شود و دراین میان مولد های بخار مورد استفاده در راکتورهای آب تحت فشار که در آنها بخار اشباع فشار پایین mpa7 تولید می گردد موردی استثنایی می باشد در همه این موارد از بخار آب بعنوان سیال کاری چرخه رانکین استفاده می شود امروز در جهان مولدهای بخار بزرگترین منبع تأمین انرژی برای نیروگاه ها بشمار می روند .
  • اجزاء اصلی مولد بخار عبارتند از:
  • 1-  دیگ 
  • 2- اکونومایزر
  • 3- سوپرهیتر 
  • 4- ری هیتر 
  • 5- ژنگستروم 
  • 6-  درام
  • و افزون به اینها مولد بخار دارای دستگاه های کمکی مختلفی مانند مشعلها ، دمنده ها ، دودکش و . . .  می باشد .
  • مولدهای بخار از جهات گوناگون تقسیم بندی می شوند و بعنوان مثال می توان آنها را به انواع صنعتی ، نیروگاهی و از جهت دیگر بعنوان درام دار و بدون درام و . . . تقسیم بندی نمود .
  • در بخش زیر به شرخ تک تک اجزاء مولد های بخار (بویلر) و انواع آنها پرداخته می شود :
  • دیگ بخار
  • دیگ بخار به قسمتی از مولد بخار گفته می شود که در آن مایع اشباع به بخار اشباع تبدیل می شودو از لحاظ فیزیکی به دشواری می توان اکونومایزر را از دیگ بخار جدا نمود .
  • مولد های بخار را می توان به نوع نیروگاهی و صنعتی تقسیم نمود که به توضیح کلی آنها پرداخته می شود .
  • مولدهای بخار نیروگاهی مدرن اساساً دو نوع هستند :
  • 1 -  نوع درام دار لوله آبی زیر بحرانی
  • 2- نوع یکبار گذر فوق بحرانی (Once Through).
  • واحدهای فوق العاده بحرانی معمولاً در فشار mpa24 کار می کنند که بالاتر از فشار بحرانی آب ،mpa 9/22 است . مولد بخار درام دار زیر بحرانی معمولاً در حدود mpa13 الیmpa 18کار می کند و بخار فوق گرم با دمای 540 درجه سانتیگراد تولید می کنند و دارای یک یا دو مرحله بازگرمایش بخار هستند . ظرفیت بخار دهی مولدهای بخار نیروگاهی مدرن بالاست و مقدار آن از 125 تاkg/s 1250 میتواند تغییر کند .
  • از سوی دیگر مولدهای بخار صنعتی آنها هستند که در شرکت های صنعتی و موسسات دیگر کاربرد دارند و انواع مختلفی را شامل می شوند . این مولدها می توانند از نوع لوله آتشی باشند مولدهای بخار صنعتی معمولاً بخار سوپرهیتر تولید نمی کنند بلکه بخار اشباع یا حتی آب گرم تولید می کنند این مولدها در فشارهای از چند کیلوپاسکال تا mpa 5/15 کار می کنند و ظرفیت بخاردهی (با آب گرم ) آنها از کمتر از 1 تا 125 kg/s میباشد . مولدهای بخار با سوخت های فسیلی غالباً با توجه به برخی از اجزاء و ویژگیهایشان به صورت زیر تقسیم بندی می شوند :
  • دیگهای لوله آتشی
  • دیگهای لوله آبی
  • دیگهای گردش طبیعی
  • دیگهای گردش کنترل شده
  • دیگهای جریان یکبار گذر
  • دیگهای زیر بحرانی
  • دیگهای فوق بحرانی
  • دیگهای لوله آتشی
  • دیگهای لوله آتشی از اواخر قرن هجدهم جهت مصارف صنعتی مورد استفاده بوده است و امروزه دیگر از این نوع دیگها در نیروگاه های بزرگ استفاده نمی شود در آنها بخار اشباع با فشار حداکثرmpa 8/1 و ظرفیت
    kg/s 3/6 تولید می شود .
  • دیگ لوله آتشی شکل خاصی از دیگ نوع پوسته ای است .دیگ نوع پوستی عبارت است از ظرف یا پوسته بسته و معمولاًً‌ استوانه ای که محتوی آب است و بخشی از پوسته , مثلاً قسمت پائینی آن ، بطور ساده در معرض گرمای شعله یا گازهای حاصل از احتراق خارجی قرارمی گیرد دیگ لوله آتشی صورت تکامل یافته دیگ پیوسته ای است که درآن بجای بخار ، گازهای گرم از داخل لوله ها عبور میکنند . که به دلیل بهبود انتقال حرارت ، بازده دیگ لوله آتشی خیلی بیشتر از دیگ پوسته ای اولیه است ومقدار آن %70  میرسد . دیگهای لوله آتشی بر دو نوعند : 1- دیگ با جعبه آتشی 
  • 2 - دیگ کشتی اسکاچ .
  • دریک دیگ با جعبه آتشی کوره یا جعبه آتشی همراه با لوله های آتشی درداخل پوسته قرار می گیرد و در دیگ کشتی اسکاج ، احتراق در داخل یک یا چند محفظه احتراق استوانه ای که معمولاً در داخل و نزدیک به ته پوسته اصلی قرار دارد ، انجام می گیرد . گاز ها از قسمت عقب محفظه ها خارج می شوند وپس از تغییر جهت از داخل لوله های آتشی به طرف جلو می آیند و از طریق دودکش خارج می شوند .
  • دیگ لوله آبی : نمونه های اولیه
  • از آنجایی که دیگهای لوله آتشی برای داشتن فشارها و ظرفیت های بالا نیازمند پوسته ای با قطر بزرگ هستند و به دلایل هزینه های مالی و مسائل خاص فیزیکی و شیمیایی از بویلرهای لوله آبی استفاده شد این دیگها به دو نوع لوله مستقیم و لوله خمیده تقسیم شده اند :
  • 1-2-1- دیگ لوله مستقیم
  • در این دیگها لوله های مستقیم با قطر خارجی 3 تا 4 اینچ بین دو مقسم عمودی قرار می گرفتند .
  • یکی از مقسم ها پایین آورنده بود که تقریباً آب اشباع را به لوله ها تغذیه می کرد . مقسم دیگر بالابرنده بود که مخلوط مایع و بخار را دریافت می کرد . چگالی آب در پایین آورنده بیشتر از چگالی مخلوط دو فازه در بالابرنده بود و این اختلاف چگالی موجب گردش طبیعی آب در جهت عقربه ساعت می شد . با افزایش ظرفیت دیگ ، مخلوط دو فاز به استوانه بالایی(درام) که به موازات لوله ها قرار می گرفت ، وارد می شد . درام آب تغذیه را از آخرین هیتر آب تغذیه دریافت می کرد و بخار اشباع را از طریق جدا کننده بخار درام ، به سوپرهیت می فرستد . انتهای  پایینی   پایین آورنده ها (Down Comer) به هدر بلودان وصل میشود که  رسوبات آب گردشی را جمع می کند .
  • 1-2-2- دیگ های لوله خمیده
  • در دیگ لوله خمیده به جای لوله های مستقیم بین درام و هدر پایینی از لوله های خمیده استفاده می شود .
  • دیگ لوله آبی : پیشرفته
  • ظهور کوره با دیوارهای خنک شونده با آب که دیواره های آبی (Water Wall) نامیده می شوند ، بالاخره منجر به ادغام کوره ، اکونومایزر ، دیگ ، سوپر هیتر‌، ری هیتر و ژنگستروم در مولد بخار شد .
  • با پیشرفت های اخیر به دلیل وجود گرمکنهای آب تغدیه ( هیتر ) به تعداد 8 عدد ، اکونومایزر کوچکتر و با افزایش فشار آب تغذیه ، سطح دیگ کوچکتر شده است زیرا گرمای نهان تبخیر با افزایش فشار به شدت کاهش می یابد لذا بویلرهای جدید دارای دیگی با سطح کمتر و سوپرهیتر و ری هیتر با سطوح بیشتر هستند . آب در دمای 230 درجه سانتیگراد تا260 درجه سانتیگراد بعد از آخرین هیتر فشارقوی وارد اکونومایزر شده و آنرا به صورت اشباع خارج می کند و آنگاه آب از قسمت میانی وارد درام می شود . آب از طریق لوله های پایین آورنده (Down Commer ) که در خارج از کوره اند . از درام به هدر های پایینی می رود و آب از هدرهای پایین از طریق Water Wall ها به بالای کوره منتقل می گردد آب در این لوله ها گرما را از گرمای حاصل از احتراق دریافت می کند و به مقدار بیشتری تبخیر می گردد و اختلاف چگالی بین آب لوله های پایین آورنده Water Wallها به گردش آب کمک می کند . در درام بخار از مایع در حال جوش جدا می شود و به سوپر هیتر منتقل شده و در نهایت در خروجی سوپرهیتر وارد توربین HP می گردد . بخار پس از خروج از تورین HP به ری هیتر باز می گردد و سپس به قسمت توربین IP وارد می شود . هوای پس از عبور از دمنده با جریان اجباری(FDF) ، توسط گازخروجی پیش گرم می شود پس از آن هوا وارد کوره می شود و در آنجا با سوخت آمیخته شده می سوزد و دما به حدود 270درجه سانتیگراد میرسد . گازهای حاصل از احتراق بخشی از انرژی خود را به Water Wall و ری هیترها ، سوپرهیترها و اکونومایزر می دهند و آنرا در دمای 300درجه سانتیگراد ترک می کنند و از آن به بعد گازها هوای ورودی را در پیش گرم کن GAH گرم و آنرا در دمایی در حدود 150 درجه سانتیگراد ترک می کنند . یک دمنده با جریان مکشی (GRF) گازها  را بعد از اکونومایزر اکستراکت کرده  و مجددا به درون کوره می فرستد .
  • دلیل اصلی برای اینکه دود خروجی از کوره با دمای حدود 150 درجه سانتیگراد کوره را ترک می کند اینست که اولاً : بایستی دمای دود خروجی بالاتر از نقطه شبنم محصولات احتراق باشد تا از تشکیل اسید و خوردگی اجزای فلزی در مسیر جریان گازها جلوگیری کند و دوم اینکه گازهای حاصل از احتراق باید دارای نیروی بالابر کافی جهت گذشتن از مقدار زیادی دود که در بالای دودکش قراردارد باشند تا بخوبی در جو پراکنده شوند .

 

  • درام ( استوانه بخار )
  • درام که در کلیه مولد های بخار به استثنای مولدهای یکبار گذر به کار می رود محفظه ای است که درآن آب تغذیه از اکونومایزر به آن وارد می شود ، بخار اشباع از آب جوشان جدا می شود و بخار به سوپر هیتر رفته و بقیه آب مجدداً از طریق لوله های Down Commer به انتهای بویلر منتقل شده و مجدداً جریان می یابد .
  • سوپرهیتر هاو ری هیترها
  • همانگونه که اشاره شد بخار خروجی (اشباع) از درام وارد سوپرهیتر ها می شود و در این بخش دمای آن تا 540درجه سانتیگراد افزایش می یابد که در مورد ری هیترها نیز همانگونه که گفته شد بخار خروجی از توربین HP وارد ری هیتر شده و پس از افزایش دما تا 540 درجه سانتیگراد  وارد توربین IP می گردد .
  • سوپرهیتر ها انواع مختلفی دارند که عبارتند از :
  • سوپر هیتر همرفتی
  • در طرحهای پیشین ، فوق گرمکنها در بالا یا در پشت ردیف لوله های آبی قرار می گرفتند تا از شعله احتراق و دما های بالا محفوظ بمانند و بدین سان طریقه اصلی انتقال گرما بین گازهای احتراق و لوله های سوپرهیتر ، همرفت بود و این نوع سوپرهیتر به سوپرهیتر همرفتی معروف است .
  • برجسته ترین ویژگی این سوپرهیتر ، جواب دهی آن به تغییرات بار است . هنگامی که تقاضا برای بخار افزایش می یابد ، بر جریان سوخت و هوا و از این رو برجریان گازهای احتراق نیز افزوده می شود .
  • ضرایب انتقال حرارت همرفتی نیز هم در داخل و هم درخارج لوله ها افزایش می یابد که این هم موجب افزایش تندتر ضریب کلی انتقال حرارت بین گازها و بخار نسبت به افزایش آهنگ جرمی جریان بخار می شود . از آنجا که دمای احتراق بر حسب بار ثابت است . بنابراین بخار به ازای هر واحد دبی جرمی جریان ، گرمای انتقالی بیشتری را جذب میکند و دمای آن بر حسب بار افزایش می یابد .
  • سوپرهیتر تابشی
  • نیاز به جذب گرمای بیشتر موجب شد تا سوپرهیتر ها با دماهای بالا ساخته شوند و در معرض شعله احتراق قرار گیرند . سرعت بخار افزایش داده شد با ضرایب کلی انتقال حرارت افزایش یابد .
  • انتقال حرارت بین گازهای داغ و شعله از یک طرف و سطوح خارجی لوله ها از طرف دیگر عمدتاً به روش تابش انجام می شود که به این نوع ، سوپرهیتر تابشی اطلاق گردید . انتقال حرارت تابشی با Tw 4 –Tf4  متناسب است که Tf : دمای مطلق شعله و Tw دمای سطح لوله است . Tf تحت تأثیر بار نیست لذا انتقال حرارت برای جریان واحد بخار ، با افزایش جریان  بخار ، کم می شود . لذا افزایش بار باعث کاهش دمای بخار می گردد .
  • بویلرهای یکبار گذر (Once Through)
  • این نوع بویلرهارا بویلرهای گردشی اجباری ، بنسون و با فشار فراگیر نیر می نامند و عنوان فراگیر به این علت به کار رفته است که این نوع دیگها در همه دما ها و فشار ها می توانند کارکنند .این نوع بویلرها برای ظرفیت های بزرگ و فشارهای فوق بحرانی مناسب است . آب تغذیه در این نوع بویلر در یک مسیر پیوسته از اکونومایزر ، Water Wall ها و لوله های سوپرهیتر می گذرد و به ترتیب به صورت مایع اشباع و بخار سوپرهیت در می‌آید . در این بویلرها برای جداسازی بخار از آب جوشان به درام نیاز نیست و گردش آب نیز صورت نمی گیرد . این نوع بویلر تنها دیگی است که برای کار درفشار های فوق بحرانی (برای آب بالاتر از Mpa 1/22)مناسب است، زیرا گرمای نهان تبخیر در فشار بحرانی و بالاتر از آن صفر است و بخار وآب مایع نیز یکسان هستند و جداسازی آنها نه ممکن است و نه لازم . این دیگها در فشارهای فوق بحرانی بیشتر به کار برده می شوند ولی با این همه استفاده از آنها در فشارهای زیاد زیر بحرانی نیز می تواند  مقرون به صرفه باشد .
  • این بویلرها در محدوده فشار mpa8/13 تا mpa6/27 و بخار دهی kg/s8/3 تا 1260 اقتصادی هستند .
  • اکونومایزر (صرفه جو)
  • اکونومایزر یک مبدل حرارتی است که دمای آب تغذیه بویلر را پس از خروج از هیترهای فشار قوی تا دمای اشباع مربوط به فشار بویلر افزایش می دهد . این کار توسط دودهایی که آخرین سوپر هیتر باری هیتر را ترک می کند انجام می گیرد . دود در دماهای بالا گرما را به سوپر هیتر وری هیترها می دهد و با دمایی حدود 370 تا 540درجه سانتیگراد به اکونومایزر وارد میگردد در ابتدا آب تغذیه پیش از گرمایش اولیه وارد اکونومایزر می شد و چون دمای آب ورودی به اکونومایزر پایین بود، در نتیجه دمای سطح خارجی لوله ها نیز کمتر از دمای نقطه شبنم گاز ها می شد که این امر به علت وجود so2 و so3 در گازها موجب چگالش و خوردگی می شد رطوبت موجب تجمع خاکستر بر روی سطوح لوله می گردید و انتقال حرارت را کمتر میکرد .
    در مولدهای مدرن ، آب تغذیه به صورت گرم شده وارد می شود و صرفه جو (اکونومایزر) در آنها در دمای بالا تر از نقطه شبنم کار می کند .
  • با توجه به این که بخش بزرگی از اکسیژن آب تغذیه ، در دی اریتور و در دمای بالا تر از 100 درجه سانتیگراد خارج می گردد لذا خوردگی داخلی کاهش می یابد و این عمل با حفظ ph آب اکونومایزر در محدوده 8 تا 9 تقویت می گردد . اکونومایزر به گونه ای طراحی می گردد که تبخیر نسبی آب تغذیه در قسمت های خروجی آن حداکثر تا %20 کیفیت در بار کامل و کمتر از آن در بارهای کمتر ممکن باشد .بر روی لوله های اکونومایزر از فین استفاده می شود.
  • پیش گرمکن های هوا (GAH(Gas Air Heater
  • پیش گرم کن های هوا مانند اکونومایزر مقداری از انرژی موجود در دود خروجی دودکش را قبل از تخلیه به جو مورد استفاده قرار می دهند دود در دماهای بین 135 درجه سانتیگراد تا 177 درجه سانتیگراد می باشد تا اولاً از چگالش گاز جلوگیری و ثانیاً به پخش مطلوب دود در جو کمک گردد . GAH ها دمای هوای ورودی به کوره را تا 260 الی 343 درجه سانتیگراد افزایش می دهد . GAH ها موجب صرفه جویی در سوخت می شوند که بدون این کار می بایست برای همان گرمایش به مصرف می رسید . صرفه جویی در سوخت و افزایش راندمان نیروگاه تناسب مستقیمی با افزایش دمای هوا در GAH  دارد . با افزایش دمای هوا در GAH به اندازه 94 درجه سانتیگراد  مصرف سوخت را حدود % 4 و با افزایش آن تا280 درجه سانتیگراد مصرف سوخت را به میزان %11 کاهش می دهد . به طور کلی دو نوع پیش گرمکن هوا وجود دارد :پیوسته – متناوب
  • GAH های پیوسته آنهایی هستند که گرما را مستقیماً از طریق تبادل گرما از گازهای گرم به هوا منتقل
     می کنند که این نوع GAH  ها از نوع لوله ای هستند ، اساساً این نوع GAH  ها مبدلهای حرارتی از نوع Shell Ftube  وبا جریان نا همسو هستند که گاز داغ از داخل لوله های مستقیم عمودی یا افقی آنها در جریان است وهوا در خارج لوله ها جریان دارد .
  • GAH های متناوب آنهایی هستند که در آنها ابتدا گرما از گازهای گرم به یک ماده واسطه ای ذخیره ساز گرما و سپس به هوا انتقال می یابد متداول ترین نوع آنها (ژنگستروم) می باشد .
  • این دستگاه از چرخانه ای تشکیل می شود که به وسیله موتور الکتریکی از طریق یک جعبه دنده کاهنده به طور آهسته و پیوسته در داخل پوسته با سرعت rpm 1 تا rpm 3 البته به قطر چرخانه می چرخند .
  • چرخانه دارای 12 الی 24 قسمت شعاعی ( قطاع) می باشد . قطاعها با سطوح گرمایشی متشکل از صفحات فولادی پر می شوند .این صفحات یا مسطح هستند ویا مواج که به صورت سبد در هم بافته شده اند . این سطوح به عنوان محیط ذخیره ساز گرما در پیش گرم کن عمل می کنند . در هر لحظه نیمی از قطاع های باقی مانده در معرض گازهای گرم هستند که هوا نیز در قسمت دوم داکت توسط پره های داغ گرم می گردد .
  • GAH های دوار بسته به نوع استقرار و کانال کشی با محور عمودی و افقی طراحی می گردند و طراحی آنها می تواند از نوع سطح لایه ای یا تلاطمی می باشد . در نوع لایه ای ، اجزای ذخیره ساز گرما نزدیک به یکدیگر قرار می گیرند به ترتیبی که جریان گذرنده از بین آنها از نوع لایه ای است . این نوع GAH ها همراه با سوخت های گازی که احتراق تمیزی دارند به کار گرفته می شوند . در نوع تلاطمی اجزای ذخیره ساز گرما با فاصله بیشتری از یکدیگر قرار می گیرند و جریان بین آنها از نوع تلاطمی است این نوع GAH ها برای سوخت زغال سنگ و مازوت مناسب است . چرخانه نوع تلاطمی عموماً به صورت قائم قرار می گیرد در حالی که در نوع لایه ای ، چرخانه معمولاً به طور افقی قرار می گیرد .
  • دمنده ها (Fan)
  • تامین هوای مورد نیاز برای احتراق سوخت در مولدهای بخار توسط فنها انجام می گیرد .
  • امروزه دو نوع دمنده (فن )متداول است :
  • دمنده با جریان اجباری هوا (Forced Draft Fan)
  • دمنده جریان مکش هوا (Induced Draft Fan)
  • دمنده ههای جریان اجباری Forced Draft Fan
  • در بسیاری از موارد ازفنهای با جریان اجباری استفاده می گردد این نوع فنها در محل ورود هوا به GAH قرار می گیرند و کل مسیر تا دود ورودی دود کش تحت فشار قرار می دهند این نوع فنها چون هوای سرد را منتقل می کنند مزیت بالایی نسبت به فنهای جریان مکشی دارند که عبارتند از :
  • مسائل تعمیراتی کمتری دارند
  • قدرت کمتری معرف می کنند زیرا هوای سرد کمترین حجم ویژه را در مسیر هوا به گاز دارد .
  • اختلاف فشار dp و حجم ویژه vi ، کار wi وw= vdp              
  • بار آن کمتر است چون فقط هوا را منتقل می کند و جرم اضافه گاز (دود) به همراه ندارد .
  • هزینه سرمایه گذاری و کارکردی اندکی دارد . به دلیل تحت فشار بودن کوره با Forced Draft Fan (FDF) آنرا کوره تحت فشار می نامند .
  • برای این که قابلیت اتمینان خوبی در نیروگاه وجود داشته باشد معمولاً از دو FDF با ظرفیت نامی
    حداکثر %50 بار کامل ، استفاده می گردد .
  • دمنده های جریان مکشی (IDF) Induced Draft Fan
  • دمنده های با جریان مکشی در مسیر جریان گازهای خروجی از کوره و بین GAH و دودکش قرار میگیرند این فن دود را در مسیر خود به جو تخلیه می کند و کل مسیر را تحت فشار منفی قرار می دهد . این فنها باید دودهای گرم را که شامل هوای اولیه و دود ناشی از احتراق است را انتقال می دهند .بنابراین مصرف انرژی در آنها بیشتر از دمنده های جریان اجباری است. افزون بر این ، این فنها باید توانایی مقابله با محصولات احتراقی خورنده و خاکستر را داشته باشند . معمولاً این نوع فنها به صورت جفت به کار می روند . هنگامی که فنهای با جریان اجباری و مکشی در بویلر به کار می روند . فن با جریان اجباری (FDF) هوای جو را از GAHو کانالهای مختلف هوا عبور می دهد و به مشعلها می رساند و وارد کوره می کند و فن با جریان مکشی نیز گازهای احتراق را از کوره بیرون می کشد و آنها را از سطوح انتقال گرما در سوپر هیترها ، ری هیترها اکونومایزر و قسمت دود GAH می گذراند و وارد دودکش می کند (Gas Recirculating Fan-GRF)
  • فنهای سانتر نیوژ با پره های Back Ward را به عنوان Forced Draft Fan و از پره های مسطح یا Forward در دمنده های مکشی Gas Recircalating Fan استفاده می شود (گاهی از پره های
     Back Ward ولی با خمیدگی کم نیز در GRF ها استفاده می شود ) . خمیدگی کمتر پره ها منجر به سرعت کمتر درنوک می شود و این موضوع چسبیدن گرد را به پشت پره ها کمتر می کند و اثرات سایشی خاکستر را به حداقل می رساند . فنهای کم سرعت با پره متحرک مسطح را برای گازهای خورنده و کثیف به کار می برند .
  • دو روش برای کنترل توان دمنده ها وجود دارد :
  • روش اول کنترل از طریق دمپرهای ورودی فنها است البته گاهی از دمپر خروجی نیز استفاده می گردد .
  • روش دوم کنترل با تغییر سرعت می باشد .
  • دود کش (Stack)
  • مولدهای بخار قدیمی برای غلبه بر افت فشار کلی و ایجاد جریان مورد نیاز هوا و گاز فقط متکی بر دودکش بودند . در بویلرهای مدرن به جریان زیاد گاز ودود خروجی نیاز است و چون مبدل های حرارتی داخل بویلر (اکونومایزر ،وسوپر هیتر و ...) افت فشارهای زیادی را ایجاد می کنند گاهی از اوقات از فنهای مکنده استفاده می گردد .

توربیــن

 

  • تجهیزی است که شامل یک محور است که تعداد بیشماری پره برروی آن نصب شده و بخار پس از برخورد با این پره ها موجب چرخاندن توربین می گردد,توربین بخار شامل سه مرحله پرفشار HP , فشارمتوسط IPو کم فشارLP می باشد که بخار سوپرهیت خروجی از بویلر ابتدا وارد توربین HP شده و پس از انجام کار مجدداً از طریق لوله های ری هیتروارد بویلر و پس از خروج از بویلر وارد توربین IP و پس از خروج ازتوربین مذکور مستقیماً به توربین LP وارد می گردد و درنهایت بخار در هنگام خروج از توربین وارد کندانسور می گردد.

 

انواع مشعلهای نفتی

 

  امروزه سه نوع اساسی اتمایزرهای مشعلهای نفتی مورد استفاده می باشد این سه نوع اتمایزر عبارتند از : -  اتمایزر مکانیکی (یا فشاری ) که معمولاً تحت نام   Pressure jetشناخته می شود . این مدل می تواند به صورت یک افشاننده فشاری ساده نصب شود یا به صورت افشاننده فشاری باز گردانندة ریزشی             (Spill Return Pressure Jet) باشد.

 -  مشعل اتمایزر توسط بخار،(Steam atomizer) که میتواند به صورت داخلی با مخلوط شدن با بخار سوخت را به صورت پودر درآورده یا با کمک مخلوط شدن خارجی بخار عمل کند .

 -  مشعل اتمایزر توسط هوا ،(Air atomizer)

جت فشاری ریزشی بطور گسترده ای در سه دهه اخیر بعنوان راه حل مشکل محدودیت حداکثر ، استفاده گردیده است . در این نوع سیستم ،فشار ورودی در مقدار حداکثر خود ثابت نگه داشته می شود و جریان مرکزی خروجی از محفظه چرخشی از صفر تا یک مقدار حداکثر افزایش می یابد .

این کنترل به وسیلةوالوهایی که فشار را در سیستم ریزشی کنترل می کنند متأثر می گردد . چنین والوهائی ممکن است به صورت متحد با ستون مشعل و یا بصورت خارجی و در یک جعبه شیر کنترلی یا یک سیستم لوله بندی قرار گیرند . مشعل توضیح داده شده همچنین دارای تسهیلاتی جهت برگشت انتهایی جریان ، هنگامی که بار روی مشعل قطع می گردد می باشد .

گرانروی مورد نیاز نفت درر مشعل باید بینst 12 و cst18 برای افشاندن مناسب باشد . آزمایش روی واحدهای بزرگ با سوخت نفت نشان می دهد که کاهش گرانروی (بدلیل افزایش دمای نفت ) باعث بهبود عمل سوختن و در نتیجه کاهش انتشار جامدات حاصل از سوختن می گردد .برای نفت با باقیمانده سنگین دما در مشعل تا 140 درجه سانتیگراد کاملاً عادی می باشد.

2-7-مشعلهای اتمایزینگ بخار

در این نوع مشعل فرایند اتمایزینگ بوسیلة شکستن نفت به قطرات کوچک بوسیله جریان بخار با سرعت بالا و عمود بر جریان خروجی نفت ایجاد می شود . شکل اساسی این نوع افشاننده اغلب به نام جت y  شناخته می شود . چنین افشاننده هایی بسته به ظرفیت مورد نیاز شامل حداکثر 20-15 جت مجزای نفت و بخار می باشند جریان سوخت در چنین افشاننده هایی به طور کلی تابعی از فشار اعمالی روی جریان سوخت می باشد . بخار و نفت توسط ستون مشعل که از لوله های هم مرکزی تشکیل شده اند به افشاننده انتقال می یابند .

یک انتهای این لوله ها توسط سیستم گلند کاملاً آب بندی می شود تا امکان انبساط جزئی فراهم گردد (زیرا بخار و نفت در دماهای مختلفی هستند) بخار بطور معمول از درون لوله مرکزی انتقال می یابد .

در گو نه دیگری از اتمایزر بخاری ، بخار از لوله خارجی و نفت از لوله داخلی وارد مشعل می گردند . این امر توسط مته کاری های پیچیده ای در افشاننده (جت پیچشی) که در ابتدا به منظور بهبود عمل افشاندن انجام گرفته محقق می شود . شرایط بخار معمولاً فشار 11-7 بار بوده و همراه با مقدار کمی Superheat می باشد .

فشار نفت جهت مقاثد کنترل جریان تغیر می کند و معمولاً به حداکثر 17 بار در مشعل می رسد

افشانندههای بخاری ، 4% یا بیشتر بخار نسبت به نفت مصرف می کند و عموماً به یک بویلر کمکی نیاز دارند .

3-7- مشعلهای اتمایزر هوا

این سیستم مشعل ، بطور مشابه ، از هوا بجای بخار استفاده می کند . هوا با فشار تا 22 بار استفاده می شود و در نتیجه هزینه قابل ملاحظه ای برای کمپرسور نیاز خواهد بود . در قیاس با بخار هوا هیچگونه مزیت خاصی ندارد و انتخاب مسئله اقتصادی خواهد بود (هزینه کل کمپرسورها ، هزینه کارکرد آنها ، هزینة بویلرهای کمکی و هزینه کارکرد آنها که عمدتاً سوخت می باشد ) .

البته هوا اثر خنک کنندگی دارد خصوصاً هنگامی که سوخت اضافی استفاده می شود و این می تواند بعنوان یک عیب برای سیستم باشد .

افشاننده های هوایی اصول عملکرد مشابهی با افشاننده های بخاری دارند .

 

در این بخش تجهیزات اصلی احتراق به کار رفته در نیروگاه حرارتی شازند تشریح می گردد .

دیگ بخار

دیگ بخار به کار رفته در نیروگاه شازند از نوع زیر بحرانی و درام دار و تحت فشار ، ری هیت دار
 و با سیرکوله طبیعی می باشد که دارای 24 مشعل بوده و با دو نوع سوخت گاز و مازوت کار می کند . مشعلها در سه طبقه 8-12 و 16متری و در دو سمت Rear و Front بویلر قرار گرفته اند . ساختار بویلر
 از نوع Complete Suspension Structure می باشد .

بویلر را می توان به اجزای زیر دسته بندی نمود :

سیستم گردش آب Water Cycle System

این سیستم شاملSteamdrum  ، Water Wall Tubes  ، Down Commers  ، Incoming Pipes  ، Out Going Pipes  می باشد .

به تعداد چهار عدد Down comer در قسمت تحتانی  درام تعبیه شده است که آب درام از این
طریق به هدرهای تحتانی بویلر متصل می گردد آب از هدر تحتانی بویلر با استفاده از632   عدد
   Water Wall Tube به سمت بالایی بویلر جریان می یابد .

Water Wall Tube ها از نوع Membrance Wall comprising Tube و Flat Steel Plate  
می باشد و قطر آنها mm5/7× 5/63 Ø می باشد .

آب پس از ورود به  water wallدر قسمت فوقانی بویلر به مایع اشباع تبدیل می گردد که این مخلوت در هدر فوقانی بویلر با استفاده از 124 عدد لوله به درام منتقل می گردد .

مطابق با طراحی بویلر Water Wall  ها به 30 حلقه تقسیم شده اند که11 حلقه در سمت Front
 و 11 حلقه در سمت real و 4 حلقه در سمت right  و 4حلقه در سمت چپ قرار دارد .

درام (drum)

 قطر دخلی درام mm 1792 بوده و ضخامت دیواره آن mm 145 و به طولm 8/17 می باشد که در ارتفاع 60متری بویلر واقع شده است . در داخل درام به تعداد 86 ست سپریتور قرار داده شده است که این اجزا به عنوان جزء اولیه جدا سازی آب از بخار در داخل درام به کار می روند که به صورت مارپیچ در دو ردیف 43 تایی در داخل درام قرار گرفته اند . جزء ثانویه جدا سازی آب از بخار در درام w- Shaped Dryer ها می باشند که در این قسمت آب و بخار ورودی به درام که از سپریتور های اولیه عبور کرده است از میان این صفحات عبور کرده و کاملاً آب و بخار در آن جدا می گردد و سپس بخار کاملاً خشک  وارد سوپرهیترها می گردد .

سوپرهیترها Super Heater System

سوپرهیترها با توجه به موقعیت قرارگیری آنها در بویلر به 5- stage تقسیم می شوند .

1- Roof    2- Rear Enclouser    3- Low Temperature     4-  Platen     5- Hig.Temp.

3-1- معرفی کلی سیستم

بخار اشباع خروجی از درام به هدر سوپرهیترRoof  منتقل می گردد و بخار اشباع از هدر سوپرهیتر roof توسط 87پانل که هر پانل از 4 لوله موسوم به Rear Water Wall Tube تشکیل شده است به قسمت تحتانی بویلر منتقل می گردد (این بخش همان سوپرهیتر Rear Enclosor می باشد ) در میان 87 پانل مذکور تعداد 43 عدد از آنها مستقیماً به هدر سوپرهیتر Low Temp متصل می گردد و 44 پانل باقی مانده به هدر تحتانی بویلر موسوم به هدر Rear Water Wall  متصل شده و مجدداً توسط 43 پانل به هدر سوپرهیتر L.T متصل
می گردد . لازم به ذکر است که لوله های سوپرهیتر Roof  همگی از نوع فین دار می باشد .

سوپرهیترl.t  در قسمت پاس دوم کوره قرار دارد که بخار پس از خروج از سوپر هیتر Rear Enclosure به این لوله ها وارد شده و بخار از طرق این لوله ها به سمت بالایی بویلر منتقل می گردد که طراحی سوپرهیتر l.t به گونه ای است که جهت حرکت بخار در داخل لوله ها خلاف جهت حرکت دود خروجی از کوره می باشد . سوپرهیتر Lt از نوع افقی بوده و لوله های آن دارای قطر زیاد و دارای فاصله Span کم می باشد . سپس بخار از طریق هدر خروجی سوپرهیتر L.T به هدر ورودی سوپرهیتر پلاتن متصل می گردد که در پاس اول کوره قرار دارد و بخار خروجی از سوپرهیتر پلاتن وارد سوپرهیتر high temp شده و در نهایت بخار سوپر هیت از هدر خروجی سوپرهیترh.t خارج و به سمت توربین hp جریان می یابد .

3-2- کنترل دمای بخار :

برای کنترل دمای بخار سوپر هیت از اسپری آب در دی سوپرهیترها استفاده می گردد . دو مرحله اسپری آب برای کنترل دمای بخار اصلی در نظر گرفته شده است . مرحله اول (primary) بین هدر خروجی سوپرهیتر L.t و هدر ورودی سوپرهیترپلاتن قرار دارد و مرحله دوم (secondary)  بین هدر خروجی سوپرهیتر پلاتن و هدر ورودی سوپرهیتر high. temp قرار گرفته است و در حقیقت اسپری  primary ، secondary هر کدام شامل قسمت right و left می باشند که داخل دی سوپرهیتر تعدادی nozzle jet   قرار گرفته است که آب اسپری از طریق این نازلها به داخل لوله بخار اسپری می گردد . و بخار و آب با یکدیگر مخلوت می شوند و دمای بخار کاهش می یابد .

عملکرد اسپری ثانویه برای تنظیم دما بوده و در محدوه های دمایی بالا با دقت کم به کار می رود . ولی عملکرد اسپری ثانویه برای تنظیم دقیق دما و کنترل دمای بین سمت راست و سمت چپ بخار سوپر هیتر می باشد . قابل ذکر است که هنگامی که هیتر های فشار قوی خارج از سرویس می باشد آب اسپری به یکباره زیاد شده و حجم بسیاری از اسپری در اسپری اولیه مصرف می گردد .

 

ری هیتر (reheater system)

ری هیتر به دو مرحله پلاتن وhigh.temp تقسیم می شود

4-1- معرفی کلی سیستم :

ری هیتر پلاتن در پاس اول کوره قرار گرفته است و بخار خروجی از توربین HP به ری هیتر پلاتن وارد می گردد که کلاً ری هیتر پلاتن از 43 پانل (هر پانل از 8 لوله) تشکیل شده است و بخار خروجی از ری هیتر پلاتن به ری هیتر high . Temp وارد میگردد که این بخش نیز در پاس یک کوره و در قسمت فوقانی آن واقع شده است . و متشکل از 87 پانل می باشد که هر پانل شامل 6 عدد لوله است و بخار خروجی از ری هیترHP در خروجی بویلر به توربین IP وارد می گردد .

4-2- کنترل دمای بخار ری هیتر

 دمای بخار ری هیتر بطور کلی از ری سیر کوله دود خروجی با کوره کنترل می گردد .

دود خروجی از کوره که از روی اکونومایزر عبور کرده است به قسمت انتهایی کوره تزریق می گردد (که این عمل توسط gas recirculation fan انجام می شود ) که این عمل موجب می گردد تا از ایجاد تاثیر منفی بر احتراق جلوگیری شود ، و در بارهای مختلف می توان دمای بخار ری هیتر را با کنترل دمپرورودی دود به GRF کنترل نمود علاوه برای سیستم فوق ، سیستم اسپری آب نیز مانند سوپر هیترها در نظر گرفته شده است که در ورودی ری هیتر پلاتن اسپری آب در نظر گرفته شده که به اسپری اضطراری مرسوم است و در حد فاصل ری هیتر پلاتن و ری هیتر high.temp نیز اسپری اصلی قرار گرفته است که کنترل نهایی دما را به عهده دارد .

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

مقاله شبیه‌سازی و تحلیل رفتار پایدار و گذرای اجزاء سیکل نیروگاه بخار

اختصاصی از اس فایل مقاله شبیه‌سازی و تحلیل رفتار پایدار و گذرای اجزاء سیکل نیروگاه بخار دانلود با لینک مستقیم و پر سرعت .

مقاله شبیه‌سازی و تحلیل رفتار پایدار و گذرای اجزاء سیکل نیروگاه بخار


مقاله شبیه‌سازی و تحلیل رفتار پایدار و گذرای اجزاء سیکل نیروگاه بخار

فرمت فایل : word  (لینک دانلود پایین صفحه) تعداد صفحات 25 صفحه

 

 

 

 

 

 

چکیده:

بررسی رفتار پایدار و ناپایدار سیکل نیروگاههای بخار در طراحی، بهینه‌سازی و ارزیابی عملکرد این نیروگاهها حائز اهمیت است، در این رابطه به کمک نرم‌افزار ویژوال بیسیک. برنامه طراحی و تحلیل سیکل واقعی نیروگاههای بخار شامل بویلر، توربین، کندانسور، پمپ‌ها، هیترهای بسته به تعداد دلخواه و هیترباز (دی اریتور) طراحی و تکامل یافته است. به کمک این برنامه، با انتخاب اجزاء سیکل و اتصال آنها، مواردی مانند بازده حرارتی، کار تولیدی، دبی جرمی سیال در هر نقطه از سیکل و زیرکش‌ها، در سیکل پایدار نیروگاه بخار مورد بررسی قرار گرفته است. به علاوه با بدست آوردن روابط بقاء انرژی و جرم در حالت ناپایدار در اجزاء سیکل، رفتار حالت ناپایدار سیکل که جهت طراحی و کنترل نیروگاه، از اهمیت ویژه‌ای برخوردار می‌باشد، بررسی شده است. در این رابطه مواردی نظیر تغییرات فشار و دمای بخار خروجی از بویلر، تغییرات دبی و فشار خروجی از درام، تغییرات توان تولیدی در توربین‌ها و تغییرات دبی و شرایط بخار ورودی به هیترها مورد مطالعه قرار گرفته است. در این رابطه به عنوان نمونه تحلیل پایدار و ناپایدار اجزاء سیکل نیروگاه منتظر قائم ارائه شده است.

 

مقدمه:

توان تولید و مصرف برق در هر کشور یکی از شاخص‌های پیشرفت صنعتی آن کشور محسوب می‌شود. در دهه‌های اخیر نیاز بخشهای صنعتی و غیر صنعتی کشور به انرژی برق رشد چشمگیری داشته است. طبق آمار موجود، مصرف برق در ایران با رشدی در حدود 9% مواجه است [1]. از سویی دیگر متوسط راندمان نیروگاههای بخار در ایران، که سهم زیادی از توان تولیدی در کشور را به عهده دارند، تنها در حدود 8/31% می‌باشد، همچنین با توجه به هزینه بالای ساخت این نیروگاه‌ها کنترل بهینه عملکرد آنها تحت شرایط مختلف بار حائز اهمیت می‌باشد. این امر نیاز به مطالعات گسترده‌تر در زمینه طراحی، بهینه‌سازی، ساخت و کنترل نیروگاه‌ها دارد.

یکی از مهمترین زمینه‌های مطالعاتی نیروگاه، شبیه‌سازی عملکرد آن تحت شرایط پایدار و ناپایدار می‌باشد. در دهه اخیر مطالعات گسترده‌ای در این زمینه در کشورهای پیشرفته صنعتی صورت گرفته است، که از موفق‌ترین آنها می‌توان به تحقیقات بخش مهندسی انرژی دانشگاه صنعتی Delft هلند اشاره کرد [2]، که ارائه دهنده برنامه موفق و کاربردی Cycle Tempo است. از دیگر نتایج مطالعاتی در این زمینه ارائه برنـامه کامپیوتری PPA توسط Lu. و Hogg اعضاء IEEE در سال 1996 می‌باشد [3]. اصولاً برنامه‌های شبیه‌ساز به عنوان یک ابزار مناسب تحقیقاتی در زمینه‌های مختلف طراحی و بهینه‌سازی سیستم‌های نیروگاهی مورد استفاده قرار می‌گیرند و برنامه‌های مختلف، بطور تخصصی سیستم‌های گوناگون بکار رفته در نیروگاههای بخار را مدلسازی، طراحی و ارزیابی می‌نمایند. یکی از مهمترین زمینه‌هایی که در طراحی نیروگاه و سیستم‌های جانبی آن اهمیت ویژه‌ای دارد، طراحی سیستم‌های کنترل عملکرد نیروگاه می‌باشد. به طور حتم اولین گام برای بررسی سیستمهای کنترلی، مدلسازی دینامیکی نیروگاه جهت پیش‌بینی رفتار گذرای اجزاء آن تحت شرایط ناپایدار خواهد بود. از اولین مدلهای دینامیکی که در این زمینه ارائه شده‌اند، مدل غیرخطی بویلر با درام بخار می‌باشد که توسط Astorm و Eklund در سال 1972 پیشنهاد شده است [4]. Rubashkin و Khesim مدل دینامیکی دیگری را برای شبیه‌سازی نیروگاه‌های فسیلی، طی یک برنامه شبیه‌ساز آموزشی ارائه کردند [5]. اما یکی از جامع‌ترین تحقیقات در این زمینه توسط Lu در سال 1999 انجام شده است که با دسته‌بندی شرایط بخار در طول سیستم، مدلهای دینامیکی ساده و جامعی برای یک بویلر درام‌دار دو مسیره با سیستم چرخش طبیعی ارائه کرده است [


دانلود با لینک مستقیم


مقاله شبیه‌سازی و تحلیل رفتار پایدار و گذرای اجزاء سیکل نیروگاه بخار