اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه رشته ریاضی شبکه ها و تطابق در گراف

اختصاصی از اس فایل دانلود پایان نامه رشته ریاضی شبکه ها و تطابق در گراف دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه رشته ریاضی شبکه ها و تطابق در گراف


دانلود پایان نامه رشته ریاضی شبکه ها و تطابق در گراف

متن کامل پایان نامه رشته ریاضی با موضوع شبکه ها و تطابق در گراف را  با فرمت ورد word دانلود نمائید

 

رشته ریاضی کاربردی

 موضوع

شبکه ها و تطابق در گراف

 

 

شبکه ها

  • شارش ها

شبکه های حمل و نقل، واسطه‌هایی برای فرستادن کالاها از مراکز تولید به فروشگاهها هستند. این شبکه ها را می‌توان به صورت یک گراف جهت دار با یک سری ساختارهای اضافی درنظر گرفت و آن ها را به صورت کارآیی مورد تحلیل و بررسی قرار داد. این گونه گراف های جهت دار، نظریه ای را به وجود آورده اند که موضوع مورد بحث ما در این فصل می باشد. این نظریه ابعاد وسیعی از کاربردها را دربرمی‌گیرد.

تعریف 1-1 فرض کنیم N=(V,E) یک گراف سودار همبند بیطوقه باشد. N را یک شبکه یا یک شبکه حمل و نقل می‌نامند هرگاه شرایط زیر برقرار باشند:

(الف) رأس یکتایی مانند وجود دارد به طوری که ، یعنی درجه ورودی a، برابر 0 است. این رأس a را مبدأ یا منبع می‌نامند.

(ب) رأس یکتایی مانند به نام مقصد یا چاهک، وجود دارد به طوری که od(z)، یعنی درجه خروجی z، برابر با 0 است.

(پ) گراف N وزندار است و از این رو، تابعی از E در N، یعنی مجموعه اعداد صحیح نامنفی، وجود دارد که به هر کمان یک ظرفیت، که با نشان داده می‌شود، نسبت می‌دهد.

برای نشان دادن یک شبکه، ابتدا گراف جهت زمینه آن (D) را رسم کرده و سپس ظرفیت هر کمان را به عنوان برچسب آن کمان قرار می‌دهیم.

مثال 1-1 گراف شکل 1-1 یک شبکه حمل و نقل است. در این جا رأس a مبدأ و راس z مقصد است و ظرفیتها، کنار هر کمان نشان داده شده‌اند. چون ، مقدار کالای حمل شده از a به z نمی‌تواند از 12 بیشتر شود. با توجه به بازهم این مقدار محدودتر می‌شود و نمی‌تواند از 11 تجاوز کند. برای تعیین مقدار ماکسیممی که می‌توان از a به z حمل کرد باید ظرفیتهای همه کمانهای بشکه را درنظر بگیریم.

 تعریف 1-2 فرض کنیم یک شبکه حمل و نقل باشد تابع f از E در N، یعنی مجموعه اعداد صحیح نامنفی، را یک شارش برای N می نامند هرگاه

الف) به ازای هر کمان و

ب) به ازای هر ، غیر از مبدأ a یا مقصد z ، (اگر کمانی مانند (v,w) وجود نداشته باشد، قرار می دهیم

مقدار تابع f برای کمان e، f(e) را می توان به نرخ انتقال داده در طول e، تحت شارش f تشبیه کرد. شرط اول این تعریف مشخص می‌کند که مقدار کالای حمل شده در طول هر کمان نمی تواند از ظرفیت آن کمان تجاوز کند، کران بالایی شرط الف را قید ظرفیت می‌نامند.

شرط دوم، شرط بقا نامیده می شود و ایجاب می کند که، مقدار کالایی که وارد رأس مانند v می شود با مقدار کالایی که از این رأس خارج می شود برابر باشد. این امر در مورد همه رأسها به استثنای مبدأ و مقصد بر قرار است.

مثال 1-2 در شبکه های شکل 1-2، نشان x,y روی کمانی مانند e به این ترتیب تعیین شده است که y , x=c(e) مقداری است که شارشی مانند f به این کمان نسبت داده است. نشان هر کمان مانند e در صدق می کند. در شکل 1-2 (الف)، شارش، وارد رأس می شود،5 است، ولی شارشی که از آن رأس خارج می شود 4=2+2 است. بنابراین، در این حالت تابع f نمی تواند یک شارش باشد. تابع f برای شکل 1-2 (ب) در هر دو شرط صدق می کند و بنابراین، شارشی برای شبکهء مفروض است.

توجه داشته باشید که هر شبکه، حداقل دارای یک شارش است، زیرا تابع fای که در آن به ازای هر داشته باشیم: در هر دو شرط تعریف
1-2 صدق می کند. این تابع، شارش صفر نامیده می شود.

تعریف 1-3 فرض کنیم f شارشی برای شبکه حمل و نقل N=(V,E) باشد.

الف) کمانی مانند e متعلق به این شبکه را اشباع شده می نامند هر گروه f(e)=c(e) اگر f(e)<c(e) این کمان را اشباع نشده می نامند.

ب) اگر a مبدأ N باشد، را مقدار شارش می نامند.

مثال 1-3 در شبکه شکل 1-2 (ب) فقط کمان اشباع شده است. هر یک از کمان‌های دیگر اشباع نشده است. مقدار شارش این شبکه

است. ولی آیا شارش دیگری مانند وجود دارد که به ؟

می‌گوئیم شارش fدر N، یک شارش ماکزیمم است، هر گاه هیچ شارش دیگری مانند در N با شرط وجود نداشته باشد.

هدف ما در ادامه، تعیین یک شارش ماکزیمم است. برای انجام این کار، ملاحظه می‌کنیم که در شکل 1-2 (ب) داریم.

درنتیجه، شارش کل خارج شده از مبدأ a شارش کل وارد شده به مقصد z برابر است.

نکته اخیر در مثال 1-3 شرط معقولی به نظر می‌رسد، ولی آیا در حالت کلی چنین وضعیتی روی می دهد؟ برای اثبات آن در مورد هر شبکه دلخواه به نوع خاصی از مجموعه های برشی که در قسمت بعد می‌آید، نیاز داریم.

 

(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

متن کامل را می توانید دانلود نمائید

چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است


دانلود با لینک مستقیم


دانلود پایان نامه رشته ریاضی شبکه ها و تطابق در گراف

مدل سه بعدی کاغذی رزمناو گراف اسپی

اختصاصی از اس فایل مدل سه بعدی کاغذی رزمناو گراف اسپی دانلود با لینک مستقیم و پر سرعت .

مدل سه بعدی کاغذی رزمناو گراف اسپی


مدل سه بعدی کاغذی رزمناو گراف اسپی

رزمناو گراف اشپی یکی از مشهورترین رزمناوهای نیروی دریائی آلمان نازی در جنگ دوم جهانی بود که به شهرت زیادی دست یافت. گراف اشپی یک رزمناو در سطح متوسط بود که پس از عهد نامه ورسای به دلیل محدودیت های کشور آلمان برای ساخت ناوهای سنگین ساخته شد اما آلمان ها با یک نوآوری عجیب موفق شدند زره این رزمناو را بسیار قطورتر از رزمناوهای مشابه بسازند.

 در سال 1939 و پس از اعلام جنگ انگلستان و فرانسه به آلمان نازی به دلیل حمله آلمان به لهستان، این رزمناو ماموریت یافت با حمله به کشتی های تجارتی آن دو کشور در اقیانوس آتلانتیک خط ارتباطی و تدارکاتی آن کشورها را دچار مشکل نماید و در این ماموریت خود موفق شد 9 کشتی تدارکاتی متفقین را غرق نماید بنابراین گروه های متعددی از ناوهای جنگی کشور انگلستان ماموریت یافتند تا این کشتی آلمانی را یافته و غرق نمایند.

 مدل های کاغذی ابزار آموزشی مناسبی میباشند . این مدلها علاوه بر کاربرد آموزشی برای سنین پایین تر میتوانند به عنوان دکور مناسب و ارزان قیمت بکار گرفته شوند و جنبه آموزشی آنها بعد از ساخت هم مهم میباشد. برای استفاده از این فایل ابتدا آنرا بر روی کاغذ و یا مقوا چاپ کرده و سپس برش داده و طبق فایل راهنما بچسبانید . به همین سادگی شما صاحب یک مدل با تناسب واقعی و بسیار زیبا خواهید بود.


دانلود با لینک مستقیم


مدل سه بعدی کاغذی رزمناو گراف اسپی