اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله ترجمه شده تکامل گیرنده نور در مهره داران اولیه

اختصاصی از اس فایل دانلود مقاله ترجمه شده تکامل گیرنده نور در مهره داران اولیه دانلود با لینک مستقیم و پر سرعت .

 

 


چکیده
چالش نمونه برداری از منظره عهد قدیم توسط مهره داران اولیه برای بقای آنها مهم بود و طرح شبکه ای برای استفاده توسط نسل های بعدی مهره داران ایجاد میکرد. چشم های تصویر گیرنده تحت فشار انتخاب چشمگیر و توانایی برای شناسایی طعمه و شناسایی شکارچیان احتمالی بود و تصور می شد که یکی از عاملان اصلی گونه زایی در دوره کامبرین اولیه باشد. بر اساس ثبت فسیل ها، ما میانیم که مارماهی های دهان گرد، ماهی های مکنده، هولوسفالان ها، الاسموبرنچ ها و ماهی های ریه دار مراحل مهمی را در تکامل مهره داران ایجاد میکند، و در صدها میلیون سال تقریباً بدون تغییر باقی مانده اند. اکنون مابا استفاده از معرف های موجود این فسیل های زنده، قادر هستیم که تکامل گیرنده نور مهره داران را با هم تطبیق دهیم. با اینکه گیرندگی نور در مارماهی های دهان گرد به نظر می رسد که بر اساس شناسایی نور و کنترل ریتم های شبانه روزی باشد و نه بر اساس تشکیل تصویر، با اینحال گیرنده های نور ماهی های مکنده به پنج طبقه جداگانه تقسیم بندی می شوند و مرحله مهمی را در انشعاب میله ها و مخروط ها نشان میدهند. حداقل چهار نوع مخروط شبکیه ای محیط بصری را در ماهی های مکنده نمونه برداری میکنند، که یک استراتژی نمونه برداری حفظ شده توسط مارماهی ها، نوعی ماهی های استخوانی مدرن، خزندگان و پرندگان است. تریکرومسی در ماهی های غضروفی حفظ شده است، که پیش بینی می گردد که بینایی تاریک چشمی صحیح در اجداد مشترک همه ناتوستوم های زنده تکامل یافت. توانایی تشخیص نور و متعادل سازی بین قدرت تفکیک و حساسیت در مهره داران اولیه عامل مهمی برای تکامل چشم بوذ، که بسیاری از ویژگی های بصری تکامل یافته حفظ شدند وقتی که مهره داران به خشکی آمدند.
کلمات کلیدی: گیرندگی نور، مخروط ها، میله ها، ژن های آپسین، رنگدانه های بصری، حساسیت طیفی

 

1- مقدمه
(a) مهره داران اولیه
ماهی های مکنده و مارماهی های گرد دهان دو باقیمانده از مرحله آگناتان (بدون فک) در تکامل مهره داران هستند. مارماهی های باستانی بر اساس گونه های فسیل، یافت شده در رسوب های فسیل ماهی های مکنده تصور می شود که به تاریخ قبل از کامبریان بازگردد. مارماهی ها تغییر کمی کرده اند و بصورت تک تبار شناخته می شوند و شامل 60 گونه در پنج جنس هستند: پارامیکسین، اپراترتوس، میکسین، نوتومیکسین، نئومیکسین، و نمامیکسین. این ماهیه های غضروفی در آب های سرد و عمیق در همه قاره ها یافت می شوند و اغلب از ماهی مرده یا ماهی های رو به مرگ و بی مهرگان تغذیه می کنند. مارماهی ها دارای یک جفت چشم جانبی در زیر قسمت مات روبافت مخروطی هستند. اگرچه چشم مارماهی ها تصور می گردد که منحط شده باشد، اما بخاطر عدم وجود عدسی و ماهیچه های درون چشمی و بیرون چشمی، مطالعات اخیر نشان میدهند که آنها ممکن است نشاندهنده یک ارتباط غیرموجود در تکامل چشم هستند که بین چشم های غیر تصویری نیامداران و چشم های تصویری ماهی های مکنده است.
مطالعات اخیر نشان داده است که ماهی های مکنده قبلاً در دوره کامبریان اول تکامل پیدا کرده اند. با اینکه همه 34 گونه های ماهی های مکندهنیمکره شمالی در یک خانواده واحد قرار داده می شوند، و چهار گونه ماهی های مکنده نیمکره جنوبی به جئوتریدی یا مورتاسیدی جدا می گردند. پیشنهاد شده است که هر دو خانواده اول بصورت مستقل از اجسام شبیه به معرف های معاصر ایچیومزان ناشی شده اند. جئوتریدی توسط Geotria australis نشان داده می شود، که یک گونه از ماهی های آب شیرین است و در رودخانه های نیوزیلند، جنوب استرالیا، جزیره تاسمانی، شیلی، و آرژانتین یافته می شود، درحالیکه مورداسیدی شامل دو گونه ماهی های آب شیرین است که محدود به رودخانه های شرق استرالیا و شیلی است. چشمان ماهی های مکنده لاروا یا ammocoete ها شبیه مارماهی های گرد دهان است. بررسی های اخیر توسط لام و همکارانش (2007) و لامب (2009) نشان میدهد که ماهی های مکنده چشم های خود را از اجدادی به ارث بردند که اجداد مشترک آنها با مارماهی گرد دهان است، و اینکه چشم لاروای شیه به مارماهی در لاروای ماهی های مکنده وجود دارد اما در بالغی به چشم های شبیه مهره داران تبدیل می شود. چشم های ماهی های مکنده که دچار دگردیسی کامل شده اند مسملا برجسته و متمایز هستند.
طبقه ماهیان غضروفی یک گروه با اجداد مشترک با بیش از 1100 گونه موجود در سکونتگاه های مختلف است، از رودخانه های آب های شیرین گرفته تا محیط دریایی که شامل دریای عمیق نیز می باشد. ماهیان غضروفی موجود قابل تقسیم به دو تاکسون، هولوسفالی و الاسموبرانچی هستند. اقوام نزدیک گونه های موجود امروزه در ثبت فسیل ها پیدا می شوند، که به تاریخ 150 Myr بر می گردد. چشم های holocephalan ها elasmobranch ها بزرگ، تصویری، و از نوع دوربینی است که تقریباً دارای عدسی های کروی شکل و ماهیچه های برون چشمی و درون چشمی و شبکیه متصل به عناصر گیرنده نور است.
ماهی های Sarcopterygian چهارپاهای اول را افزایش دادند و امروزه توسط ماهیان ریه دار، و سلکانت ها، لاتی مریا chalumnae و لاتی مریا menadoensis معرفی می گردند. روابط بین همه زیررده های فسیلی اولیه علیرغم ظهور تحلیل تکامل نژادی توالی اسیدهای آمینه و نوکلئوتید برای ژن های مختلف، بصورت بحث انگیز باقی می ماند. بعضی از تحلیل های ملکولی تکامل نژادی Sarcopterygian نشان میدهد که ماهی های ریه دار در مقایسه با سلکانت ها، ارتباط بیشتری با چهارپاها دارند، درحالیکه بقیه آنها تقسیم سه بخشی بین هر سه گروه را نشان میدهند. شکل های فسیلی ماهی های ریه دار استرالیایی سراتودوس به تاریخ دوره کرتاسه اول 135 Ma بر می گردد. بنابراین سیستم بصری N. forsteri می تواند به بهترین شکل سیستم بصری قبل از پدیداری مهره داران خشکی را در دوره دونین نشان دهد.
این گروه های مهره داران اولیه دوره های مهمی را در تکامل مهره داران نشان میدهند و مطالعه بر روی سیستمهای بصری آنها در گونه های موجود روزنه ای به گذشته را ممکن ساخته است. مارماهی های گرد دهان و ماهی های مکنده معرف های زنده نسب agnathan هستند که gnathostome ها را افزایش دادند، و بنابراین مطالعه بر روی چشم های آنها ما را قادر می سازد تا در مورد نوع محیط نوری دریافت شده توسط اجداد مهره دار ما فکر کنیم و اینکه چشم های آنها چطور برای بینایی تطبیق یافتند، و بدینوسیله اساسی برای ظهور مهره داران فک دار ایجاد شد. holocephalan غضروفی و elasmobranch ها نشاندهنده نسب مبنایی مهره داران فک دار و شکارچیان اپکس هستند. کوچ محیط های نوری تاریک تر ممکن است یکی از دلایل اصلی برای موفقیت این گروه بزرگ باشد، اگرچه اعضای بیشتری از ماهیان غضروفی باید بررسی گردد و مطالعات زیادی تنوه انطباق های بصری به محیط نوری را بدون محدودیت تکامل نژادی نشان میدهند. از طرف دیگر، مارماهی های موجود نشاندهنده دوره دورتری از تکامل هستند، وقتی که مهره داران نزدیک بود که به خشکی برسند و در نتیجه در معرض شدت نور بالاتر و دامنه وسیع تری از طول موج های موجود نور قرار بگیرند. برای همه این گروه های مهم، بینایی رنگ می تواند عامل مهمی در موفقیت تکاملی آنها در نمونه برداری منظره بصری باستانی باشد.
(b) منظره بصری باستانی
اگرچه شرایط محیطی که بسیاری از مهره داران باستانی در آن شرایط وجود داشتند بصورت فرضی هستند، با اینحال محرک های بصری انتخاب تصادفی انطباق چشمی آنها را بر اساس چشم های مهره داران موجود و منقرض شده تحریک کرده اند. مدارک دیرین شنایب از دوره های سیلورین و دونین نشان میدهد که چشم های جانبی مهره داران باستانی قابیت تشکیل تصویر را داشتند و در مدار ماهیچه های بیرون چشمی می چرخیدند. این Ostracoderm ها دریایی بودند و احتمالاً از استخراج خوراک در زیرلایه یا روی آن تغذیه می کردند. با توجه به محیط نوری این اجداد مهره داران اولیه، دو تئوری پیشنهاد شده است که گیرنده های نور مختلف چطور تکامل پیدا کردند: (1) ماهی هایی که دارای رنگدانه های بصری بودند، بهتر می توانستند اهدافی را تشخیص دهند که از لحاظ طیفی دارای کنتراست متفاوتی بودند و (2) تکامل در حداقل دو طبقه طیفی از گیرنده های نور، نویز قابل ملاحظه همراه با اهتزاز تولید شده توسط نوری که از موج های سطحی در آب های سطحی عبور میکند را حذف میکند، و در نتیجه شناسایی شکارچیان اولیه را ممکن می ساخته است.
در هر دو این تئوری ها فرض می شود که بینایی در مهره داران اجدادی بر اساس مخروط بود. علیرغم عدم وجود هر گونه مدرک رفتاری از بینایی رنگ در مهره داران اولیه یا اجدادی، این احتمال وجود دارد که بینایی رنگ حداقل به تاریخ 540 Myr قبل از این بر می گردد که مهره داران باستانی دارای چهار آپسین مخروطی مهره بودند. بر اساس تحلیل ژنتیک ملکولی از ژن های رنگدانه های بصری بصری مهره داران، پیش بینی شد که آپسین های حساس به طول موج بلند/حساس به طول موج متوسط (LWS/MWS) ابتدا تکامل پیدا کرد و سپس آپسین های Rh1 تکامل پیدا کردند، که بدین معناست که بینایی روزگاهی قبل از دید تاریک چشمی وجود داشت. اگرچه انتخاب فشارهای منشأ بینایی رنگ هنوز ناشناخته هستند، اما مهره داران اولیه د محیط آب های سطحی زندگی می کردند، که دارای نور خوبی بود، و طیف نور وسیعی در تکامل رنگدانه های بصری بکار گرفته می شد و در محیط های پیچیده زیاد و حیوانات زیادی از آن استفاده می شود که بعضی از آنها ذاتا رنگی بودند.
در این بررسی، ما تکامل گیرنده های نور را معرفی میکنیم. این بررسی شامل استراتژی های اولیه برای فیلتر سازی طیفی و تنظیم پتانسیل برای تشخیص رنگ می باشد. توان دید روزگاهی و تاریک چشمی نیز در محتوای محیط نور باستانی مورد بحث قرار می گیرد، که تقاضاهای بینایی برای هر گروه برای تغذیه، فرار از دست شکارچیان و تولید مثل برای مطالعات عملکردی در مورد گیرنده های نور ضروری است.
2- تکامل گیرنده های نور اولیه
(a) میله ها یا مخروط ها؟
از لحاظ تاریخی، بیان شده است که شبکیه چشم مهره دارات شامل دو سیستم بصری مستقل است. شولتز (1866، 1867) بر اساس یافتن میله های برجسته در حیوانات شبانه یا شامگاهی و مخروط های حیوانات روزانه پیشنهاد کرد که دو گیرنده نور مجزا از لحاظ شکلی واسط بینایی روزگاهی و تاریک چشمی بودند. شولتز (1967) همچنین نقش مخروط ها در شناسایی رنگ را با مقایسه حضور یا غیاب میله ها یا مخروط ها در تعدادی از گونه های مختلف شناسایی کرد و نتیجه گیری کرد که مخروط ها از میله ها تکامل پیدا کرده اند. این یافته ها سپس از سوی چندین مؤلف رد شد که گیرنده های شبیه به مخروط را در چشم جانوران راسته دهان (یعنی ماهی های مکنده) شناسایی کردند، اما تعیین خصوصیات و تمایز میله ها و مخروط ها در مهره داران اولیه مشخص نیست و موضوع بحث زیادی برمدت بیش از 150 سال بوده است.
شبکیه تعدادی از ماهی های مکنده در نیمکره شمالی از لحاظ شکلی بررسی شده است و تصور می شود که شامل دو نوع گیرنده نور بلند و کوتاه باشد؛ بصورت فرضی بترتیب گیرنده نور میله ای و مخروطی. سپس اوهمان دو گیرنده را بعنوان میله طبقه بندی کرد، و علیرغم اینکه هر دو گیرنده تقریباً دارای مبناهای گیرنده نیمکره ای با تعدادی روبان ای سیناپسی بودند، حضور شمول غشایی در روبافت رنگدانه شبکیه ای و غشای پلاسمای اطراف حجم دیسک های بخش خارجی، ویژگی های آشکار مربوط به مخروط نیز وجود داشت. اینها شامل بخش های خارجی و تاشدگی گهگاه غشای پلاسما بود. بر اساس تداوم دیسک های بخش خارجی با ماتریس برون سلولی و الگویی از پروتئین در سراسر بخش خارجی، هر دو نوع گیرنده نور در ماهی های مکنده دریایی بصورت مخروطی تصور می گردد.
شکل بخش خارجی برای توصیف گیرنده های نور استفاده شده است، اما این باعث نتایج نامعلومی بعلت شباهت هر یک از انواع گیرنده در بخش های مختلف شبکیه شده است، که اغلب محصول تغییر در اندازه گیرنده و بسته بندی است. این ابهام مخصوصاً برای تطبیق مجدد در ماهی های مکنده نیمکره جنوبی مشکل می باشد، که پنج نوع شکل گیرنده های نور بر اساس این معیار از هم متمایز شده اند که به اندازه تراکم فراساختاری رنگدانه طول جذب کننده طول موج موتاه در myoid حساس هستند، که ویژگی است که به آسانی قابل مشاهده است. بر اساس تداوم دیسک های بخش خارجی در ماتریس برون سلولی در هر پنج نوع شکل گیرنده های نور در G. australis، همه آنها بصورت مخروطی تصور می گردند. گیرنده های کوتاه و بلند ماهی های مکنده قطب شمال نیز برای تعیین وضعیت شکل مخروطی یا میله ای مشکل می باشد؛ مؤلفان آنها را بصورت مخروط و میله و یا یک میله و یک مخروط بررسی کرده اند. ویژگی های شکلی دیگر ممکن است ویژگی های بهتری برای متمایز سازی میله ها و مخروط ها باشد، اگرچه این معیارهای سنتی ممکن است بدون در نظر گرفتن ویژگی های عملکردی، طیفی و ملکولی قطعی نباشند.
اگرچه تحلیل های طیفی نیز ممکن است مبهم باشند چون حساسیت طیفی میله ها با دامنه مخروط های MWS می پوشانی دارد، توالی های اسیدهای آمینه پروتئین های آپسین ممکن است دارای ابهامات مشابهی باشند. ما فرض میکنیم که ژن های گیرنده نور ممکن است در حقیق نشانه های مهمی برای شناسایی و/یا عملکرد گیرنده های نور اولیه داشته باشند. به نظر می رسد که آپسین های Rh1 و RhB که توسط کالین و همکارانش (2003) شناسایی شده است بترتیب دارای ویژگی های مشترکی با آپسین های Rh1 و Rh2 باشند. البته توالی اسید آمینه در آپسین RhA در ماهی های مکنده واسط بین آپسین های میله ای و مخروطی Glu122 و نوع مخروطی Pro189 باشد.
فرآیند گرفتن فوتون و انتقال آن به سیگنال بیوشیمی یک فرآیند باستانی است که نیازمند دامنه متنوعی از واکنش های شیمیایی است که شباهت زیادی را در بخش های مؤلفه ای در مهره داران و بی مهرگان نشان میدهد. در مهره داران، بسیاری از این فرآیند های مؤلفه ای توسط ایزوفرم های میله ای یا مخروطی مختلفی رمزگذاری می گردند. این پروتئین ها واسط واکنش ها در مراحل مختلف آبشار بیوشیمی هستند. پس از گرفتن فوتون و ایزومری شدن رنگساز از 11-cis به همه شکل های انتقالی، تغییر صورت بندی برآیند در پروتئین آپسین از طریق آبشار phototransduction به سیگنال بیوشیمی قابل شناسایی توسط نورون های شبکیه ای دیگر تبدیل می گردد. نتایج ابتدایی برای ماهی مکنده G. australis نشان میدهد که بطور کلی فقط ایزوفرم های واحد ژن های phototransduction حضور دارند و توالی های کدگذاری از لحاظ گونه ای بیشتر شبیه به مخروط هستند تا شبیه میله. بنابراین ممکن است در زمان تاریخچه تکاملی وقتی که مهره داراتن فک دار و بدون فک به دو نسب مختلف تقسیم شدند، چشم های ماهی های مکنده دارای سیستم بصری مطابق با نور بر اساس گیرنده های مخروطی شکل بود. البته حداقل یک نوع گیرنده متحمل نوعی تغییر ماهیت به دورگه گیرنده شد که در نتیجه به میله درستی با سن ماهی های غضروفی تبدیل شد.
(b) حساسیت طیفی
طول موج حداکثر جذب (λmax) رنگدانه بصری در یک گیرنده می تواند سودمند باشد اما معیار قطعی برای تمایز بین حساسیت طیفی میله ها و مخروط ها نباشد، اگرچه در گونه های بسیاری این مقدار ممکن است مشابه باشد.

 


شکل 1 نمایش طرح حساسیت های طیفی رنگدانه های بصری انواع مختلف گیرنده های نور یافت شده در مهره داران اولیه.

 

هیچ تحلیل microspectrophotometric از جذب طیفی انواع گیرنده نور منفرد در مارماهی ها وجود نداشته است. البته آزمایشات رفتاری نشان داده اند که واکنش های شنایی نسبت به محرک نور حداکثر بین 500 تا 520 نانومتر بود، که در بیشتر از 600 نانومتر هیچ واکنشی مشاهده نمی شد یا واکنش کمی مشاهده میشد.
خصوصیات طیفی انواع گیرنده نور در ماهی های مکنده توجه بیشتری را به خود جلب کرده است. مطالعات Microspectrophotometric در مورد انواع گیرنده های نور طولانی و کوتاه در دو گونه نیمکره شمالی مقادیر حساسیت های طیفی حداکثری را نشان میدهد که بترتیب بین 525 تا 600 نانومتر و 517 تا 55 نانومتر است. بنابراین به نظر می رسد که گیرنده های نور کوتاه و بلند در ماهی های مکنده قطب شمال بترتیب دارای رنگدانه بصری MWS و LWS در بخش خارجی خود می باشد.
در ماهی های مکنده نیمکره جنوبی، تحلیل طیف سمجی نوری آپسین های بازترکیب در سلول های پستانداران، پنج رنگدانه بسری را با مقادیر λmax در 359, 439, 497, 492 و 560 نانومتر نشان داد. مطالعات microspectrophotometric بر روی سه نوع گیرنده نور نشان داد که این گیرنده های نور از رنگساز بر مبنای A2 بر اساس خوبی تناسب طیف های جذب میانگین برای الگوهای رنگدانه محاسباتی استفاده میکند.
λmax رنگدانه بصری در بخش خارجی نوع گیرنده نور منفرد یافت شده در شبکیه مرحله مهاجر به سوی پایین M. mordax به اندازه 514 نانومتر است. نوع گیرنده در M. mordaxبر اساس λmax آن ممکن است با گیرنده هی کوتاه L. fluviatilis و P. marinus همگن باشد. گیرنده های نور مهاجران رو به پایین و رو به بالای ماهی های مکنده اقیانوس آرام، دارای رنگدانه بصری بر مبنای ویتامین A1 هستند.
ماهی خاویار transmontanus وقتی که همراه با یافته های مکمل کامل گیرنده های نور دارای رنگدانه های بصری بر مبنای ویتامین A2 در سگ ماهی سفید بررسی گردد، به نظر می رسد که مهاجرت بین آب های شیرین و آب های شور برای تحریک یک سیستم رنگدانه بصری A1/A2 کافی نیست. در این مرحله، احتمالاً نمی توان بطور کامل پیش بینی کرد که آیا ویتامین A1 یا A2 رنگساز باستانی در مهره داران است. البته جالب است که بیان کنیم که فقط ویتامین A1 را می توان از کبد Myxine glutinosa جدا کرد.
با استفاده از microspectrophotometry، مشخص شده است که سه گونه از ray دارای سه نوع مخروط در دامنه های طیفی حساس نسبت به طول موج، MWS، و طیف های بلند هستند. این یافته ها نشان میدهند که پتانسیل تشخیص رنگ در این طبقه از مهره داران وجود دارد که زمانی تصور می شد دارای کوررنگی باشند، و از گزارشات اولیه سه اوج حساسیت طیفی ثبت شده از لحاظ الکتروفیزیکی در 476، 502 و 540 نانومتر پشتیبانی میکند.
شبکیه چشم ماهی ریه دار استرالیایی دولایه است و شامل هر دو گیرنده نور میله ای و مخروطی است. Microspectrophotometry مشخص می سازد که ماهی های ریه دار نوجوان دارای چهار نوع گیرنده نور مخروطی منفرد با رنگدانه های بصری حساس به ماوراء بنفش، SWS، MWS و LWS هستند و بنابراین دارای پتانسیل موجود برای بینایی رنگ چهاررنگی هستند. مخروط های UVS تنها نوع گیرنده نور هستند که در شبکیه چشم مایه ریه دار بالغ یافت نمی شود. شبکیه ماهی های نوجوان و بالغ نیز شامل نوع واحدی از گیرنده نور MWS هستند. بر اساس پهنای باند طیفی و تناسب با جذب طیف ها به الگوهای رنگدانه بصری، همه رنگدانه های بصری در ماهی های ریه دار تصور می گردد که از رنگساز بر مبنای A2 استفاده کنند، که در ماهی های دیگر در آب های شیرین معمول است.
(c) آپسین ها و تنظیم طیفی
آزمایش ملکولی رنگدانه های بصری گیرنده نور یک روش مهم و قطعی برای توصیف میله ها و مخروط ها و ارزیابی پتانسیل دید رنگی است. همانطور که قبلاً نیز توصیف شد، رنگسازی که محدود به آپسین های بصری مهره داران است از الدهید ناشی شده است که رنگسازی است که محدود به آپسین های بصری مهره داران است. رنگدانه های پورفیروفسین از لحاظ طیفی دارای انتقال طول موج بلندترس نسبت به ارغوان بینایی مطابق با آن هستند و این تأثیر طول موج های بلندتر را افزایش میدهد. با قرار گرفتن در غشای دیسک ها در بخش های خارجی، این پروتئین های تراغشایی یک زنجیره پلی پپتید متشکل از حدود 350 اسید آمینه ایجاد میکند، که هفت تراغشای alpha-helices مرتبط با حلقه های درون سلولی و برون سلولی را تشکیل می دهد. تغییرات در حساسیت طیفی گیرنده نور عمدتاً توسط تغییرات در توالی اسید آمینه پروتئین آپسین میانجی می گردند، که هر کدام از آنها توسط ژن آپسین مجزا و نسبت های مختلف دو رنگساز رمزگذاری می گردد. ژن های شبکیه ای مهره داران در پنج گروه مجزا تکاملی طبقه بندی می گردند: آپسین های LWS یافت شده در مخروط ها، آپسین های SWS 1 یافت شده در مخروط ها، SWS 2 یافت شده در مخروط ها، آپسین های MWS یافت شده در مخروط ها، و آپسین های MWS که عمدتاً در میله ها یافت می شوند. اگرچه رنگدانه های Rh1 بر مبنای آپسین معمولاً در میله ها وجود دارند، آپسین RhA وابسته به آن دارای خصوصیات شبیه به مخروط هستند. کپی ژن اساسی برای تمایز عملکردی گروه های مختلف از آپسین ها را فراهم می سازد.

 


شکل 5طرح تکامل نژادی گروه های مهره داران اصلی که تکامل پوشنه، رنگدانه میودال با جذب طول موج کوتاه، الیسوزوم ها، قطره های روغنی بدون رنگ، و قطره های روغنی رنگی را نشان میدهد.

 

در حال حاضر، هیچ رنگدانه بصری شبکیه ای وجود ندارد که در مارماهی ها توصیف شده باشد. البته هیساتومی و همکارانش (1991) اولین کسانی بودند که تولید مثل غیرجنسی و توالی ژن آپسین با طول کامل را از ماهی مکنده رودخانه ای Lampetra japonica انجام دادند. توالی اسیدهای آمینه شبیه به توالی آپسین Rh1 از مهره داران دیگر بود، که 78 تا 82 درصد شباهت را نشان میدهد. رنگدانه ماهی مکنده در محیط مصنوعی، حداکثر جذب 500 نانومتر را نشان داد و نسبت به پادتن رنگدانه میله ضد-گاوی (Rh1) واکنش نشان داد، که قبلاً مشخص شده بود که نوع گیرنده نور کوتاه در L. japonica را شناسایی میکند. جالب اینکه این رنگدانه ماهی مکنده بتدریج در حضور هیدروکسیلامین (حتی در تاریکی) سفید می شد که معمولاً یک خصوصیت رنگدانه های مخروطی است. بنابراین این رنگدانه دارای خصوصیات بیوشیمی بین رنگدانه های میله و مخروط است. همچنین، یک ژن آپسین در ماهی مکنده دریایی (P. marinus) دارای توالی اسید آمینه ای است که 92 درصد شناسایی را نسبت به ژن آپسین Rh1 ماهی مکنده رودخانه ای (L. japonica) نشان میدهد.

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   19 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله ترجمه شده تکامل گیرنده نور در مهره داران اولیه

گزارش کارآموزی نرم افزار کامپیوتر موضوع آشنایی با مفاهیم اولیه پست الکترونیک کار با نامه ها

اختصاصی از اس فایل گزارش کارآموزی نرم افزار کامپیوتر موضوع آشنایی با مفاهیم اولیه پست الکترونیک کار با نامه ها دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی نرم افزار کامپیوتر موضوع آشنایی با مفاهیم اولیه پست الکترونیک کار با نامه ها


گزارش کارآموزی نرم افزار کامپیوتر موضوع  آشنایی با مفاهیم اولیه پست الکترونیک کار با نامه ها

تعداد صفحات : 47

فرمت فایل : word (قابل ویرایش)

آشنایی با مفاهیم اولیه پست الکترونیک

1- پست الکترونیک

ارسال و دریافت نامه از طریق کامپیوتر را پست الکترونیکی (E-mail) می گوییم. پست الکترونیکی شباهت بسیار زیادی با پست معمولی دارد. فرستنده نامه هر زمان که بخواهد می تواند پیام خود را ارسال کند و گیرنده نیز در هر زمان که بخواهد می تواند پیام های فرستنده را بخواند. یک نام الکترونیکی در واقع یک فایل است. وقتی مقصد یک نامه الکترونیکی را اسال می کند، این فایل از یک کامپیوتر به کامپیوتر دیگر می‌رود تا به مقصد برسد و به صندوق پستی سیستم گیرنده رفته و در آنجا ذخیره می‌شود تا گیرنده نامه به ان مراجعه کرده و آن را دریافت کند. پست الکترونیک یکی از مشهورترین سرویس های اینترنت است. سایت های زیادی در اینترنت وجود دارند که امکان ایجاد صندوق پست الکترونیکی و ارسال و دریافت نامه های الکترونیکی را به صورت رایگان در اختیار کاربران قرار می دهند و معمولاً فضایی از3MB تا 100MB یا حتی بیشتر در اختیار کاربر جهت نگهداری نامه ها می دهند.

پست الکترونیک (Email) ارسال و دریافت نامه از طریق کامپیوتر را پست الکترونیک می گوییم.


2- مزایای پست الکترونیک

از مزایای پست الکترونیک می توان به موارد زیر اشاره کرد:

- سرعت بالا در ارسال نامه ها

عملیات ارسال نامه بدون توجه به مسافت، معمولاً در عرض چند ثانیه انجام می شود و تفاوت نمی کند.

- هزینه پایین

هزینه ارسال نامه به وسیله پست الکترونیک بسیار پایین تر از هزینه ارسال نامه با پست معمولی است. در بسیاری از کشورهای دنیا پست الکترونیک به صورت رایگان در اختیار مردم قرار دارد.

- قابلیت دریافت نامه ها در هر جای دنیا

گیرنده نامه با داشتن یک صندوق پست الکترونیک می تواند در هر کجای دنیا و در هر ساعت از شبانه روز که بخواهد به صندوق پستی خود دسترسی داشته باشد و نامه‌های خود را دریافت کند.

- امکان ارسال نامه به افراد و گروه های مختلف

در پست الکترونیک می توان یک نامه را بدون داشتن هزینه اضافی، به گروه های مختلف که ممکن است شامل صدها یا هزاران عضو باشند ارسال کرد.

3- آدرس پست الکترونیک چیست؟

- قسمت دوم آدرس پست الکترونیک

6- باز کردن صندوق پستی یک کاربر خاص

2- خواندن نامه ها

کادر ویرایش متن نامه

1- از منوی Apply stationery را انتخاب کرده و سپس

یک نوشت افزار را انتخاب می کنیم.

2- در نکار دکمه Create mail در نوار ابزار فلش

کوچکی وجود دارد که با کلیک کردن روی این فلش

کپی کردن متن

حذف کردن متن

فهرست مطالب و ایندکس


دانلود با لینک مستقیم


گزارش کارآموزی نرم افزار کامپیوتر موضوع آشنایی با مفاهیم اولیه پست الکترونیک کار با نامه ها