اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کامل درمورد الکتریسیته

اختصاصی از اس فایل دانلود تحقیق کامل درمورد الکتریسیته دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد الکتریسیته


دانلود تحقیق کامل درمورد الکتریسیته

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 35

 

الکتریسیته

الکتریسیته، برگرفته شده از کلمه یونانی: ήλεκτρον ، اثری است که به دلیل موجودیت بار الکتریکی پدید می‌آید و همراه با مغناطیس یکی از نیروهای پایه در فیزیک به نام الکترومغناطیس را تشکیل می‌دهد.

 مفاهیم اصلی

تاریخچه

تاریخ الکتریسیته به ایران و بین‌النهرین باستان در دوره اشکانیان برمی‌گردد و اولین باطری اختراع شده را به اشکانیان نسبت می‌دهند که به خاطر محل یافتش به باطری بغدادی شهرت گرفته است.[1]

الکتریسیته امروزی، توانایی‌های خودش را بیشتر مدیون زحمات فیزیکدانانی همچون، الساندر ولت، آندره آمپر، نیکلا تسلا، جرج سیمون اهم، مایکل فارادی و توماس ادیسون (به عنوان مخترع) است

خواص خطوط میدان الکتریکی

خواص عمده خطوط میدان الکتریکی در مسائل الکترواستاتیک:

  • به خاطر اینک میدان الکتریکی در هر نقطه از فضا وجود دارد، در هر نقطه از فضا همواره می توان یک خط میدان کشید.
  • برای توزیع بار های اکتریکی معلوم ، در هر نقطه میدان الکتریکی دارای بزرگی و راستای کاملا مشخصی است. به این معنا که در هر نقطه خط نیروی الکتریکی را فقط می توان در یک راستای معین یعنی بصورت تک خط کشید. به بیان دیگر خط های نیرو همدیگر را قطع نمی کنند.
  • خط های نیرو ممکن است تنها در بار نقطه ای یکدیگر را قطع کنند.
  • خط های نیرو از بار مثبت (نقطه شروع خط های میدان) خارج و به بار منفی (انتهای خطوط نیرو) نزدیک می شوند. خط های میدان الکتریکی در هیچ نقطه ای به جز بار الکتریکی پایان نمی پذیرند (ختم خطوط میدان بر سطوح هادی ها به این دلیل است که بارها در سطوح هادی ها توزیع یافته اند). آنها از بار مثبت به سوی بار منفی اند و می توانند از میان نارسانا ها عبور کنند.
  • چون در داخل رساناها میدان الکتریکی وجود ندارد (صفر است)، بارهای آنها در حالت تعادل به سر می برند. در داخل رساناها خط میدان الکتریکی وجود ندارد. به عبارتی خط های میدان الکتریکی از داخل رسانا ها عبور نمی کنند. و این خطوط از سطح رسانا ها شروع و به سطحشان ختم می شوند.
    چون بارهای الکتریکی نقطه شروع و پایان خطوط میدان الکتریکی هستند، بارهای مثبت روی سطوحی واقع اند که خط میدان شروع می شود. در حالیکه بار های منفی روی سطوحی قراردارند، که خط میدان پایان می پذیرند.

خطوط میدان الکتریکی بر سطح رسانا عمودند:

بدیهی است خطوط میدان الکتریکی راستای نیرو های وارد بر بار را نشان می دهند. اگر این خطوط با سطح رسانا زاویه ای داشته باشند نیرو مؤلفه ای روی سطح خواهد داشت. در این صورت بارها با این مولفه روی سطح جابه جا خواهند شد. از این رو ترازمندی بارهای الکتریکی فقط هنگامی ممکن است. که خطوط میدان در امتداد عمود بر سطح رسانا ی مورد نظر باشند.

پتانسیل الکتریکی در رساناها:

چون داخل هر رسانا میدان الکتریکی صفر است، به عبارتی خطوط میدانی وجود ندارد. بنابر این بین هر دو نقطه از رسانا اختلاف پتاسیل الکتریکی صفر است. بر طبق رابطه زیر: E=U/d بنابراین U=Ed که در آن E میدان الکتریکی ، d فاصله نقطه میدان از مبدا و U اختلاف پتاسیل الکتریکی می باشد. این گفته در تمام نقاط روی رسانا نیز صدق می کند.
در نتیجه سطح رسانا سطح هم پتاسیل است. سطوح تک تک رساناها، سطوح هم پتاسیل است اما احتمال دارد بین دو سطح رسانای مستقل از هم اختلاف پتاسیل وجود داشته باشد.

شار الکتریکی

تعداد خطوط میدان الکتریکی که از سطح عمود بر مسیر خطوط عبور می‌‌کنند، را شار الکتریکی می‌گویند. شار یکی از خواص تمام میدانهای برداری است که آن را برای میدان الکتریکی به صورت تعریف می‌کنند.

مقدمه

فرض کنید یک حلقه سیم چهار گوش را در جهت جریان آب طوری قرار داده‌ایم که صفحه حلقه بر راستای جریان آب عمود است. اگر مساحت حلقه را A و سرعت جریان آب را با v نشان دهیم، در این صورت آهنگ شارش آب از درون حلقه را که با Ф نشان می‌‌دهند، به صورت Ф=Av تعریف می‌‌شود. Ф را شار می‌‌گویند.
اگر حلقه بر راستای جریان آب عمود نبوده، بلکه با بردار سرعت جریان آب زاویه θ بسازد، در این صورت شار به صورت Ф=BAcosθ در می‌‌آید. عین همین قضیه در مورد میدان الکتریکی نیز برقرار است. از الکترواستاتیک می‌‌دانیم که میدان الکتریکی حاصل از یک توزیع بار بوسیله خطوطی که به عنوان خطوط نیرو معروف هستند، نشان داده می‌‌شود. بنابراین در هر ناحیه اگر یک سطح بسته فرضی در نظر بگیریم، این سطح بوسیله یک بردار عمود بر آن مشخص می‌‌گردد. این بردار را بردار نرمال می‌‌گویند.
بنابراین اگر خطوط نیرو با بردار نرمال زاویه θ بسازند و مساحت سطح برابر A باشد، در این صورت کافی است میدان حاصل از تعداد خطوط نیرو موجود در داخل سطح را در مساحت سطح ضرب کنیم. این کار را با استفاده از انتگرال انجام می‌‌دهند، یعنی سطح را به المانهای کوچک سطح dA تقسیم می‌‌کنند. المانها چون به اندازه دلخواه کوچک انتخاب می‌‌شوند، بنابراین می‌‌توان میدان الکتریکی را در داخل المان سطح dA ثابت فرض کرد. بنابراین اگر هر المان را در E موجود در داخل آن ضرب کرده و سهم مربوط به تمام المانها را جمع کنیم، شار الکتریکی حاصل می‌‌شود و این همان تعریف انتگرال است، یعنی به زبان ریاضی می‌‌توان گفت:

مثال

فرض کنید در یک میدان الکتریکی یکنواخت E ، یک استوانه طوری قرار داده شده است که محور استوانه با میدان موازی است. سطح استوانه را می‌‌توان به سه سطح مجزا تقسیم نموده و شار مربوط به هر کدام را مجزا حساب نموده و نتیجه را با هم جمع کرد. در طرفین استوانه ، در یک طرف جهت میدان و جهت بردار عمود بر سطح در یک راستا و هم جهت هستند، بنابراین اگر مساحت آن را با A نشان دهیم، چون میدان الکتریکی یکنواخت است، لذا سهم شار مربوط به این سطح برابر EA خواهد بود.
اما در قاعده دیگر استوانه ، جهت میدان و جهت بردار عمود بر سطح با هم زاویه 180 درجه می‌‌سازند. لذا اگر مساحت آن A باشد، شار آن برابر EA- خواهد بود و بالاخره در مورد سطح جانبی استوانه بردار عمود بر سطح و میدان الکتریکی بر هم عمودند، لذا سهم شار مربوط به سطح جانبی صفر خواهد شد. به این ترتیب شار الکتریکی کل که از سطح استوانه می‌‌گذرد، صفر خواهد بود. این مساله تعجب آور نیست، چون خطوط نیرو از یک طرف وارد و از طرف دیگر خارج می‌‌شوند و اصلا از سطح جانبی شاری عبور نمی‌‌کند.

شار الکتریکی و قانون گاوس در الکتریسیته

با فهمیدن مفهوم شار الکتریکی می‌‌توان قانون گاوس را به زبان شار الکتریکی بیان نمود. به بیان دیگر ، اگر سطح گاوسی بیانگر سطحی باشد که شار الکتریکی در داخل آن مورد نظر باشد، قانون گاوس را می‌‌توان این گونه بیان نمود که شار الکتریکیی که از داخل یک سطح بسته مفروض عبور می‌‌کند، برابر q/ε_0 است. ε_0 گذردهی الکتریکی خلا می‌‌باشد.

یکای شار الکتریکی

از آنجا که شار الکتریکی را به صورت حاصلضرب مساحت سطح در میدان الکتریکی جاری شده از داخل آن تعریف کردیم، لذا چون یکای میدان الکتریکی را نیوتن بر کولن در نظر می‌‌گیریم، بنابراین یکای شار الکتریکی نیز برابر نیوتن در متر مربع بر کولن خواهد بود که به اختصار به صورت نشان داده می‌‌شود.

آهنربای الکتریکی دید کلی

آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند. ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است. از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.
عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند. از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند. زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد. با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد. بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.

ساخت آهنربای الکتریکی ساده

آهنربای الکتریکی ساده را می‌توان در منزل ساخت. کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم. بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود. مثلا در کوره گرم و سپس به آرامی سرد شود. سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد. گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.

ساختار آهنربای الکتریکی

میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است. ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند. در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.
وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند. ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود. وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.
هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود. بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند. به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.

آهنربای الکتریکی پر قدرت

تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است. در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند. در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود. گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند. ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.
از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم. پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.

تکنیک کاپیتزا

کاپیتزا (P.L. kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد. او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید. در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.
البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند. در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا(.

کاربرد آهنربای الکتریکی

دید کلی :

بیشتر کاربردهای فنی آهنربای الکتریکی بر توانایی جذب و نگهداری اجسام آهنی مبتنی است. در این کاربردها نیز آهنربای الکتریکی نسبت به آهنرباهای دائمی امتیازهای چشم گیری دارند. زیرا تغییر جریان داخلی آهنربای الکتریکی تغییر سریع نیروی بالابرنده آن را امکان پذیر می‌سازد.

نیروی آهنربایی :

نیرویی که در آهنربایی با آن اجسام آهنی را جذب می‌کند با افزایش فاصله بین آهنربا و آهن به تندی کاهش می‌یابد. به این دلیل ، نیروی بالابرنده آهنربای الکتریکی ، معمولا با نیرویی معین می‌شود که بر آهن واقع در مجاورت بلافصله خود وارد می‌کند. به عبارت دیگر ، نیروی بالابرنده یک آهنربا مساوی نیرویی است که برای جدا کردن آن تکه تمیزی از آهن صاف که جذب آن شده لازم است

آهنربای الکتریکی با نیروی بالا برندگی زیاد :

برای بدست آوردن آهنربای الکتریکی با نیروی بالا برنده تا حد امکان زیاد ، باید سطح تماس بین قطبهای آهنربا و جسم آهنی جذب شده (معروف به جوشن) را افزایش داد، و سعی کرد تا تمام خطوط میدان مغناطیسی فقط از آهن بگذرد، یعنی تمام فواصل هوا یا شکاف‌های بین جوشن و قطب‌های آهنربا حذف شوند. برای این منظور باید سطوح قوه تغذیه می‌شود می‌تواند باری به جرم 80 تا 100Kg را نگه دارد.

کاربرد آهنرباهای الکتریکی با نیروی بالا برندگی زیاد

از آهنرباهای با نیروی بالابرهای بزرگ در مهندسی برای مقاصد گوناگونی استفاده می‌شود. مثلا ، جرثقیلهایی که با آهنربای الکتریکی کار می‌کنند، در کارخانه‌های استخراج فلز و فلزکاری برای حمل تکه‌های آهن یا ادوات که باید روی آن آشکار شود جذب آهنربای الکتریکی نیرومندی می‌شود. کافی است که جریان را وصل کنیم تا جسم در هر وضعی بر میز کار ثابت شود، یا جریان را قطع کنیم تا جسم رها شود.
برای جدا کردن مواد مغناطیسی از اجسام غیر مغناطیسی ، نظیر جداسازی سنگ‌آهن از کلوخ «جداسازی مغناطیسی) ، جدا کننده‌های مغناطیسی به کار می‌روند، که در آنها ماده‌ای که باید تصفیه شود از میدان مغناطیسی نیرومند آهنربای الکتریکی می‌گذرند. این میدان تمام ذرات مغناطیسی را از ماده جدا می‌کند.

آهنربای الکتریکی پیشرفته :

اخیرا آهنرباهای الکتریکی پرقدرت با سطوح عظیم قطبها کاربردهای مهمی در ساختمان شتابدهنده‌ها یافته‌اند، یعنی وسایلی که در آنها ذرات باردار الکتریکی الکترونها و پروتونها) تا سرعتهای بسیار بالایی که به انرژی 108 تا 109 الکترون ولت مربوطند، شتاب داده می شوند. باریکه هایی از چنین ذرات که با سرعت بسیار زیادی حرکت می‌کنند ابزار عمده ای برای بررسی ساختار اتمی‌اند. آهنرباهایی که در این وسایل به کار می‌روند حجم‌های عظیمی دارند.

آهنرباهای الکتریکی با قطب های مخروط ناقص :

وقتی که لازم باشد میدان مغناطیسی بسیار نیرومندی را فقط در ناحیه کوچکی بدست می‌آوریم، آهنرباهای الکتریکی با قطب‌هایی به شکل مخروط ناقص به کار می‌روند. آن گاه در فضای کوچک بین آنها میدانی با القای مغناطیسی با 5T را می‌توان به آسانی به دست آورد. چنین آهنرباهای الکتریکی‌ای عمدتا در آزمایشگاه‌های فیزیک برای آزمایش‌هایی با میدان مغناطیسی نیرومند به کار می روند.

کاربردهای پزشکی آهنرباهای الکتریکی :

انواع دیگر آهنربای الکتریکی نیز برای مقاصد خاصی طراحی شده اند. مثلا ، پزشک‌ها برای خارج کردن براده‌های آهن که تصادفی وارد چشم شده باشند از آهنربای الکتریکی استفاده می‌کنند. برای خارج ساختن سوزن و سایر اشیا تیز فرو رفته در پا و سایر اعضای بدن از آهنرباها استفاده می‌شود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد الکتریسیته