اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایانامه شبکه‌های عصبی

اختصاصی از اس فایل پایانامه شبکه‌های عصبی دانلود با لینک مستقیم و پر سرعت .

پایانامه شبکه‌های عصبی


پایانامه شبکه‌های عصبی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)


تعداد صفحه:53

فهرست:

فهرست

مقدمه ای بر شبکه‌های عصبی مصنوعی ----------------------------------------------- 4

تاریخچه شبکه‌های عصبی مصنوعی-------------------------------------------------- 5

شبکه عصبی چیست؟-----------------------------------------------------------  6

شبکه  عصبی چه قابلیتهائی دارد؟---------------------------------------------------  6

الهام از طبیعت---------------------------------------------------------------- 7

شبکه های عصبی در مقایسه با کامپیوترهای سنتی :--------------------------------------- 7

مسائل مناسب برای یادگیری شبکه های عصبی------------------------------------------  8

پرسپترون -------------------------------------------------------------------9

الگوریتم یادگیری پرسپترون -------------------------------------------------9

الگوریتم gradient descent---------------------------------------------------------  10

مشکلات روش gradient descent-----------------------------------------------  10

تقریب افزایشی gradient descent----------------------------------------------   10

الگوریتم  Back propagation--------------------------------------------------------  11

قدرت نمایش توابع------------------------------------------------------------- 12

انواع آموزش شبکه------------------------------------------------------------   12

برخی زمینه های شبکه های عصبی-------------------------------------------------   13

سبکهای معماری شبکه‌های عصبی -------------------------------------------------- 14

قواعد یادگیری در شبکه‌های عصبی ------------------------------------------------- 14

آموزش شبکه‌های عصبی --------------------------------------------------------  15

آموزش unsupervised یا تطبیقی (Adaptive)  --------------------------------------------   16

تفاوت‌های شبکه‌های عصبی با روش‌های محاسباتی متداول و سیستم‌های خبره -------------------   16

انواع یادگیری برای شبکه های عصبی-----------------------------------------------    18

یادگیری با ناظر--------------------------------------------------------- 18

یادگیری تشدیدی------------------------------------------------------    18

یادگیری بدون ناظر------------------------------------------------------   19

معایب شبکه های عصبی -------------------------------------------------------     19

مزیتهای شبکه های عصبی------------------------------------------------------     19

سیستم خبره  ---------------------------------------------------------------   21

سیستم خبره چیست؟---------------------------------------------------    21

ساختار یک سیستم خبره‌-------------------------------------------------- 22

استفاده از  منطق فازی ---------------------------------------------------  23

مزایا و محدودیت‌های سیستم‌های خبره ---------------------------------------   24

کاربرد سیستم‌های خبره‌--------------------------------------------------   24

چند سیستم خبره مشهور-------------------------------------------------  25

مروری بر کاربردهای تجاری ------------------------------------------------------  26

بازاریابی-------------------------------------------------------------  26

بانکداری و حوزه های مالی-------------------------------------------------  28

پیش بینی -----------------------------------------------------------   29

سایر حوزه های تجاری ---------------------------------------------------  29

کاربرد مدلهای شبکه عصبی در پیش‌بینی ورشکستگی اقتصادی شرکتهای بازار بورس---------------   30

کاربرد مدل‌ شبکه عصبی در پیش‌بینی ورشکستگی شرکتهای بازار بورس----------------------   31

تبیین مفهوم ورشکستگی------------------------------------------------------   31

متغیرهای مدل تحقیق--------------------------------------------------------   32

اطلاعات شرکتهای نمونه تحقیق--------------------------------------------------  32

تعیین ‌مدل شبکه عصبی سه لایه برای پیش‌بینی ورشکستگی شرکتها------------------------   33

sتعیین مدل بهینه شبکه عصبی چهار لایه برای پیش‌بینی ورشکستگی شرکتها-------------------  38

مقایسه مدلهای شبکه عصبی سه و چهار لایه برای پیش‌بینی ورشکستگی اقتصادی--------------- - 41

پیش‌بینی ورشکستگی اقتصادی شرکتها در سالهای 1385 و 1386---------------------------  41

روند ورشکستگی اقتصادی شرکتهای بازار بورس در دوره 1369ـ 1386------------------------  41

جمع‌بندی و نتیجه‌گیری-------------------------------------------------------- 44

منابع----------------------------------------------------------------------45

 

مقدمه ای بر شبکه‌های عصبی مصنوعی

شبکه‌های عصبی مصنوعی (Artificial Neural Network - ANN) یا به زبان ساده‌تر شبکه‌های عصبی سیستم‌ها و روش‌های محاسباتی نوینی هستند برای یادگیری ماشینی، نمایش دانش، و در انتها اعمال دانش به دست آمده در جهت بیش‌بینی پاسخ‌های خروجی از سامانه‌های پیچیده. ایده اصلی این گونه شبکه‌ها (تا حدودی) الهام‌گرفته از شیوه کارکرد سیستم عصبی زیستی، برای پردازش داده‌ها، و اطلاعات به منظور یادگیری و ایجاد دانش قرار دارد. عنصر کلیدی این ایده، ایجاد ساختارهایی جدید برای سامانه پردازش اطلاعات است. این سیستم از شمار زیادی عناصر پردازشی فوق العاده بهم‌پیوسته با نام نورون تشکیل شده که برای حل یک مسأله با هم هماهنگ عمل می‌کنند و توسط سیناپسها(ارتباطات الکترومغناطیسی) اطلاعات را منتقل می‎کنند. در این شبکه‌ها اگر یک سلول آسیب ببیند بقیه سلول‎ها می‌توانند نبود آنرا جبران کرده، و نیز در بازسازی آن سهیم باشند. این شبکه‌ها قادر به یادگیری‎اند. مثلا با اعمال سوزش به سلول‎های عصبی لامسه، سلول‎ها یاد می‌گیرند که به طرف جسم داغ نروند و با این الگوریتم سیستم می‌آموزد که خطای خود را اصلاح کند. یادگیری در این سیستم‎ها به صورت تطبیقی صورت می‌گیرد، یعنی با استفاده ازمثال‎ها وزن سیناپس‎ها به گونه‌ای تغییر می‌کند که در صورت دادن ورودی‎های جدید، سیستم پاسخ درستی تولید کند.


دانلود با لینک مستقیم


پایانامه شبکه‌های عصبی