لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل: Word (قابل ویرایش و آماده پرینت)
تعداد صفحه :140
بخشی از متن مقاله
1- مقدمه
مصرف پلیمرهای پلی کربنات، پلیمرهای که با گروه –O-C-O- بهم متصل هستند، از ز مان گزارشات اولیه بسیار رشد کرده است Report 1969) (PEP . تضمین رشد آینده این صنعت با افزایش شرکتهای جدید به 6 تولید کننده سابق این ماده نشان داده شده است رشد تکنولوژی، شامل افزایش گریدهای با کاربرد خاص، امکان رقابت پلی کربناتها را در مصارف مختلف فراهم کرده است.
پلی کربناتها در بین پلیمرهای مختلف از لحاظ پایداری ابعادی مقاومت ضربه و شفافیت بسیار برجسته میباشند. مقاومت در برابر شعله آن خوب بوده و توسط بهبود دهندههایی بهتر شده تا گرید خاصی تولید شود. با وجود اینکه پلیمرهای دیگر و فلزات در تعدادی از خواص بتنهایی بهتر از پلی کربنات میباشد، اما نیاز به ترکیبی از خواص مختلف باعث میشود که پلی کربنات بعنوان تنها امکان انتخاب شود. از سوی دیگر کمی مقاومت در برابر حلالها یک اشکال عمده در بسیاری از کاربردها میباشد. بطور کلی پلی کربناتها در تمامی رشتههای مهندسی پلاستیک رقابت میکنند، که از مصارف عمده آن میتوان به شیشهها، علامات و روشنایی اشاره کرد.
این گزارش تکنولوژی، هزینه و بازار پلی کربناتها را که از سه روش فسژنیزاسیون محلولی فسژنیزاسیون بین سطحی و ترانس استریفیکاسیون تهیه میشوند را ارائه میکند. 2 نوع از دو روش اول و یک نوع از روش سوم ارائه خواهد شد. همچنین نحوه تولید گرید مقام در برابر شعله و اکستروژن دوباره پلیمر برای تولید گریدهای خاص بیان خواهد شد.
این تحقیق به پلی کربنات ترمو پلاستیک آروماتیک بر پایه بیس فنول A محدود است، که مهمترین مزیت پلی کربنات از نقطه نظر تجاری میباشند. در PEP گزارش 50، کوپلیمرها فقط با توجه به بیس فنول A و بیس فنول A هالوژنه و یا مقدار کمی از عوامل سه گروهی شاخهای در نظر گرفته شده است بدلیل عرضه تجاری گریدهای خاصی، میبایستی هم کوپلیمرها و آلیاژها را در نظر گرفت، کوپلیمرهایی که تجاری نیستند و همچنین آلیاژهایی که پلی کربنات جزء کم هستند در نظر گرفته نمیشوند.
این گزارش هیچگونه آنالیزی در مورد پلیمرهای فوم ، پلیمرهای تقویت شده با الیاف و افزودنیهایی ضد شعله که موضوع PEPهای مختلف هستند را ارائه نمیکند. مواد اولیه خام بیس فنول A . فسژن و تترابروموبیس فنول A (TBBPA) موضوع PEP شماره 81 میباشند. منابع اطلاعاتی ، پتنتها، جزوات و مقالات مربوطه از سال 1976 میباشد.
2- خلاصه
بعد از 7 سال افزایش سالیانه 20% مصرف در ایالات متحده آمریکا، بیش از 60% در سال 1973 افزایش یافت. افزایش در سال 1974 با توجه به منحنیهای مقدماتی برابر %10 بود که احتمالاً کمتر از مقدار واقعی آن میباشد. با ظرفیت جدید تولید، میانگین افزایش تولید سالیانه 20% یک پیشبینی قابل قبول برای کلیه محلهای تولید مانند اروپای غربی، ایالات متحده و ژاپن میباشد. مصرف به میزان تجارت بود و همچنین به کمبود محصولات رقابتی بستگی خواهد داشت. تولید آن با کمبود مواد اولیه ممکن است محدود شود.
یکی از مهمترین چیزهای مورد نیاز تعدد گریدهای مختلف میباشد. گریدهای جدید خواص زیادی از جمله مقاومت در برابر شعله، مقاومت در برابر آسیب، مقاومت در برابر اشعهuv ، ترکیب سفتی و مقاومت ضربه، مناسب بودن برای قالبگیری چرخشی و همچنین مناسب بودن برای فومهای ساختاری را دارا هستند. رشد عمده اخیراً در تهیه شیشه، Lighting و علامات میباشد. بعنوان شیشه نشکن پلی کربناتها به موقعیت رزینهای آکریلیک نفوذ کردهاند روم و هاس در حل ورود به بازار شیشههای پلی کربنات از طریق خرید دستگاههای ورقسازی و تجارب از شرکت رولند (Rowland) یک شرکت کوچک که رقابت در این بازار حساس به سرمایه را مشکل میدانست میباشند. روم و هاس امروزه تولید کننده پلیمر پلی کربنات نمیباشند مهارت و سرمایه مورد نیاز و همچنین بازار پلی کربنات بیان کننده آنست که فقط در کشورهایی پیشرفته استفاده خواهند شد.
نفوذ پلی کربناتها به بازار سنتی پلیمرهای دیگر و فلزات، با افزایش تولید و در نتیجه کاهش قیمت آنها بیشتر میشود. در سال اخیر این روند قیمت بدلیل افزایش تورم برعکس شده است. حداقل قیمت در ایالات متحده 98 سنت بر پوند در مقایسه با 75 سنت بر پوند و قیمت تجاری اولیه میباشد. با این وجود، نفوذ در بازار بدلیل تأثیر تورم بر اجناس رقابتی همچنان ادامه دارد.
تولید کنندگان سه روش عمده برای تولید پلی کربنات بکار میبرند: فسژنیزاسیون محلولی، فسژنیزاسیون بین سطحی و ترانس استریفیکاسیون. فقط کسر کمی از تولید کل توسط ترانس استریفیکاسیون میباشد و مقدار عمده تولید از طریق فسژنیزاسیون بین سطحی میباشد. اما تفکیک دقیق در میزان آن از مقالات مشخص نمیباشد. کلیه این روشها به انضمام دو متغیر و یک روش بر ای گرید مقاوم در برابر شعله در این گزارش نوشته شده است.
فسژنیزاسیون محلولی شامل واکنش بیس فنول A با فسژن در حضور پیریدین بعنوان گیرنده اسید ] تا محصول جانبی اسید کلریدریک تولید کند[ و p-t بوتیل فنول (PTBP) بعنوان اختتام دهنده زنجیربا متیلن کلراید بعنوان حلال میشود. یک پلیمر واحد تکراری تولید میشود که انتهای زنجیر با گروههای p-t بوتیل فنیل اختتام یافته است. پلیمر باز یافت شده، اکسترود میشود و بصور ت چیپهایی بریده میشود فسژنیزاسیون محلولی بصورت تجاری توسط جنرال الکتریک استفاده میشود.
در فسژنیزاسیون بین سطحی، یک فاز Caustic آبی اسید هیدروکلریک را جذب کرده و از پریدین استفاده نمیشود. تری اتیل آمین این واکنش را سرعت میبخشد.
فسژنیزاسیون بین سطحی بصورت تجاری توسط شرکتهای بایره موبای و تولید کنندگان ژاپنی استفاده میشود.
توانس استریفیکاسیون واکنش بین دی فنیل کربنات با بیس فنول A در دمای بالا (elevated) میباشد. ملکولهای پلیمری که از این طریق تولید میشود با گروههای فنیل خاتمه مییابند. ترانس استریفیکاسیون بصورت تجاری توسط شرکت بایر و شرکتهای تحت لیسانس آن استفاده میشود.
جدول 2-1 ارزیابی ما را از تولید گریدهای تزریق پلی کربنات نشان میدهند در فسژنیزاسیون محلولی پیوسته (ستون اول جدول) از یکسری راکتور همزن دار استفاده میشود. هزینهها بالاتر از فسژنیزاسیون بین سطحی توسط راکتورهای مشابه (ستون دوم) میباشد. که یکی از دلایل آن میتواند بدلیل نیاز به بازیافت پیریدین باشد.
در روش راکتور پیوسته (ستون سوم) فسژنیزاسیون بین سطحی در یک راکتور tubular که بعد از آن راکتورهای ناپیوسته (Batch) همزندار وجود دارد انجام میشود. هزینههای نشان داده شده بیشتر از هزینههای فسژنیزاسیون بین سطحی با استفاده از راکتورهای پیوسته همزندار (ستون دوم) میباشد. این امر بدلیل زمان طولانیتر واکنش – همانطور که در پتنت نشان داده شده است- میباشد. علی ایحال هیچگونه اطلاعات کینتیکی دقیقی وجود ندارد. راکتور پیوسته توسط ایدمیتسو (Idemitsu)ابداع گردید. اما طراحی پروسس ما برابر با محاسبات اقتصادی ایدمیتسو نمیباشد.
فسژنیزاسیون محلولی ناپیوسته (ستون چهارم) برای مقایسه با فسژنیزاسیون محلولی
پیوسته (ستون اول) نوشته شده است. هزینههای سیستم ناپیوسته بدلیل نیاز به فضای بیشتر برای راکتور و Surge، 20 میلیون پوند در سال بیشتر میباشد. اما اختلافات بطور نسبی کم میباشد. زیرا تغییر محصولات در سیستم ناپیوسته سادهتر است. و چنین سیستمی در صورت نیاز به تولید گریدهای مختلف در یک مجتمع ترجیح داده میشود. در عین حال موقعیت اقتصادی سیستم ناپیوسته با کاهش ظرفیت تولید بهتر میشود.
با وجود اینکه مقایسهها برای گرید تزریق میباشد، اما پروسسهای بحث شده تا با اینجا برای تولید تمام گریدهای پلی کربنات مناسب میباشند. ترانس استریفیکاسیون برای تولید گریدهای ویسکوز مناسب نمیباشد، بنابراین ارزیابی آن بر اساس نصف ظرفیت گرید تزریق انجام میشود. همانطور که در جدول نشان داده شده است (ستون پنجم) حتی با وجود ظرفیت کم، حداقل هزینه استهلاک را دارد. و در نتیجه هزینه تولید بسیار مناسبی در مقیاس برابر را خواهد داشت، متاسفانه کیفیت محصول تولید شده توسط روش ترانس استریفیکاسیون کمتر از روشهای دیگر میباشد.
با وجود اینکه پلی کربناتها ذاتاً در برابر سوختن مقاوم هستند ، اما گریدهای خاص مقاوم در برابر شعله که حاوی هالوژنها و احتمالاً عناصر دیگر میباشند عرضه شدهاند. ما هیچگونه اطلاعات دقیق در مورد ترکیبهای تجاری نداریم. ستون ششم جدول یک ارزیابی از پلی کربنات مقاوم در برابر شعله حاوی 5% وزنی برم ( از طریق تترابرموبیس فنول A) را نشان میدهد. پلیمر در این مورد از طریق فسژنیزاسیون محلولی پیوسته تولید شده است. در نتیجه ستون ششم میبایستی با ستون اول مقایسه شود. کل هزینه مواد برای گرید مقاوم در برابر شعله شامل 3/3 سنت بر پوند از گرید تزریق بیشتر است. با مقایسه، هزینه استهلاک برای گرید مقاوم در برابر شعله (شامل 3 سنت بر پوند هزینه فروش و تحقیق بیشتر از حالت عادی) 20 سنت بر پوند بیشتر باشد.
بجای استفاده از امکانات ویژهای برای تولید گرید مقاوم در برابر شعله، میتوان مستر بچ هایی حاوی مقدار زیاد برم ساخت. سپس این مستر بچ را میتوان با گریدهای استاندارد آلیاژ کرد و دوباره آنها را اکسترود نمود. ستون آخر هزینه اضافی مورد نیاز برای آلیاژسازی و اکستروژن دوباره را نشان میدهد. اشکال شامل قیمت رزین و افزودنیها نمیشوند.
در کلیه پروسسهایی که ارزیابی شد، (بجز ترانس استریفیکاسیون) پلیمر در یک نقطه بصورت پودر میباشد. در نتیجه افزود نیها را میتوان قبل از اکستروژن با آن آلیاژ کرد. حتی در این موارد، توانایی تولید مستر بچهایی برای تقاضاهای متغیر بازار مطلوب است. ستون آخر همچنین برای چنین اهدافی نیز قابل اعمال میباشد.
بیشترین مقدار تولید پلی کربنات از روش فسژنیزاسیون بین سطحی میباشد که ارزانتر از فسژنیزاسیون محلولی با پیریدین بعنوان گیرنده اسید میباشد. جنرال الکتریک در ابتدا روش دوم را شروع کرد. اما بتدریج از آهک بعنوان گیرنده اسید برای توسعه استفاده نمود، با وجود عدم ارزیابی این روش، اما انتظار میرود که هزینهها قابل رقابت با فسژنیزاسیون بین سطحی باشد زیرا نیازی به بازیافت پیریدین نیست.
هزینه تولید پلی کربنات عموماً به هزینه مواد علی الخصوص به هزینه بیس فنول A بستگی دارد .
جنبههای تکنیکی:
در کنار پیشرفتهای تکنولوژی، در سالهای اخیر توجه به محیط زیست و ایمنی بیتشر شده است. کلیه این فاکتورها در طراحیهای این گزارش و همچنین گزارش بروز شده PEP50 در نظر گرفته شده است. همچنین مقالات اخیر اثر جدی خوردگی فلزات تجهیزات را بر روی پایداری پلی کربناتها نشان میدهد. در نتیجه مواد مقاومتری نسبت به قبل در اینجا مشخص شدهاند. در نتیجه تغییرات پروسس از دو گزارش نبایستی مستقیماً مقایسه شوند.
فسژنیزاسیون محلولی منجر به حلالیت پلیمر و منومرهای واکنش نداده در متیلن کلراید حاوی پیریدین و هیدروکلرید آن میشود. شستشو با آب اسیدی پیریدین و هیدروکلراید آن را از بین میبرد. اما تأثیری در از بین بردن منومر ندارد منومر و پلیمرهای با جرم ملکولی پایین ( الیگومر) بویژه در پلیمرهایی که با غذا در تماس هستند نامطلوب میباشند. از بین بردن کامل این اجزا با یک سیستم رسوب 2 مرحلهای امکان پذیر است. ضد حلال تازه (هپتان) در تماس با ماده جدا شده، مایع شامل منومر و الیگومر را حل کرده و دو غاب حاصل از صافی عبور می کند. ماده عبور کرده از صافی در مرحله اول پلیمر را رسوب میدهد. ماده عبور کرده از صافی که شامل حلال، ضد حلال، منومر و الیگومر میباشد، تقطیر میشود تا مقداری از ضد حلال جدا شود. ماده پایین برج توسط بخار (محلول ضد حلال بالای برج) دوباره تقطیر شده تا از سطح های انتقال حرارت جلوگیری شود که میتواند توسط الیگومرهای ویسکوز آلوده گردند. در عین حال پیریدین توسط تقطیر در سیستم قلیایی باز یافت شده و پلیمر رسوب شده خشک سپس آلیاژ و اکسترود شده و بصورت چیپهایی بریده میشود. تجهیزات زیادی برای بازیافت مواد از جریانهای پس ماند و همچنین مصرف ضایعات بکار گرفته شده است.
فسژنیزاسیون بین سطحی شامل حلالیت منومر در محلول آبی قلیایی و تمامی آن با فسژن در حضور فاز حلال (متلین کلراید) میباشد یک کاتالیست مانند تری اتیل آمین بکار گرفته میشود. متغیرهای پروسه از زمان اضافه نمودن کاتالیست فرق میکند. پلیمر در متین کلراید حل می شود و بازیافت پلیمر از حلال مانند فسژنیزاسیون محلولی میباشد. با این تفاوت که نیازی به بازیافت پیریدین نمیباشد. کارایی بازیافت حلال در فسژنیزاسیون بین سطحی بیشتر از کارآیی آن در فسژنیزاسیون محلولی میباشد. بنابراین فقط قسمتی از مزیت اقتصادی نشان داده شده در جدول 2-1 بدلیل حذف پیریدین از سیستم میباشد. خشک کردن پلیمر از یک سیستم آبی احتمالاً بسیار سختر از خشک کردن آن از یک سیستم غیرآبی میباشد. اما ما اطلاعات تجربی در این زمینه نداریم.
در کنار رسوب پلیمر با ضد حلال، می توان پلی کربنات را با تبخیر حلال نیز بازیافت نمود. اما فرآیند تبخیر کامل حلال مستلزم کار با یک ماده بسیار ویسکوز میباشد. بعنوان راه حل دیگر، یک محلول غلیظ را می توان قلیایی کرد تا ژل تشکیل شود که آنرا خشک و خرد کرد. این روشها سخت و هزینه بر بنظر میرسد و برای جداسازی منومرو الیگومرها مناسب نمیباشند. بنابراین در کلیه طراحیهای این گزارش به غیر از ترانس استریفیکاسیون پلیمر توسط ضد حلال بازیافت میشود. در روش ترانس استریفیکاسیون از حلال استفاده نمیشود.
در راکتور فسژنیزاسیون بین سطحی که توسط ایدمیتسو طراحی شده است، بیس فنون A را در محلول قلیایی با فشرده اضافی در حضور متیلن کلراید در جریان توربولونت مجاور میسازد. و یک محلول که با کلروفرم اختتام یافته است تولید میشود. این ماده با محلول بیس فنول A اضافی و اختتام دهنده زنجیر در حضور کاتالیست کاند نس میشود.
3- وضعیت صنعت
کاربردهای پلی کربنات بدلیل پیشرفتهای تکنولوژیکی تولید پلیمر و تجهیزات بهمراه قیمت قابل رقابت بسیار افزایش یافته است. با پیشرفت تکنولوژی گریدهای مختلفی هم اکنون در دسترس میباشد.
جدول 3-1 گریدها و طراحی های مختلف تولیدکنندگان پلیمر خالص بهمراه تولید کنندگان آلیاژها و پلیمرهای تقویت شده را نشان میدهد. این اطلاعات از طریق مجلات، مقالات تهیه گردیده و توسط تعدادی از تولید کنندگان بازنگاری شده است.
شیمیایی میتسوبیشی گاز، (Mitsubishi Gas chemicd) که در جدول 3-1 نوشته شده است، جانشین شیمیایی میتسوبیشتی ادوگاوا (Mitsubishi Edogawa) بوده که در گزارش PEP 50 آورده شده است.
یکی از پیشرفتهای مهم از گزارش PEP 50 ، قالب گیری بادی میباشد که در آن یک روده حول یک هسته تزریق شده و سپس به شکل قالب باد میشود. پلی کربناتی که برای این منظور تولید میشود، که نیازی به رفتار غیر نیوتنی ندارد ، هم قیمت گرید تزریق استاندارد میباشد که بایستی بگونهای فرآیند شود تا رفتار غیرنیوتنی از خود نشان بدهد. علاوه بر این، قالبگیری تزریقی بادی مشکلات مربوط به کارکردن و بازیافت قطعات کوچک و اضافی که در قالبگیری اکستروژن بادی وجود دارد را ندارد. بنا به این دلایل مصرف قالبگیری بادی ترزیقی روز به روز برای پلی کربنات همانند پلیمرهای دیگر رشد میکند. محصولات موبای و بایر برای قالبگیری بادی استفاده میشود اما در جدول 3-1 در ستون مربوط نوشته نشده است.
بنا بدلایل ایمنی، مصرف گریدهای مقاوم در برابر شعله روز بروز افزایش مییابد. بنابراین گریدهای جدید به بازار معرفی میشوند. بنابراین تغییراتی در نام گریدها مانند SE و NB مورد انتظار است زیرا کلمات «خود خاموش کن «self extinguishing » و «آتش نگیر non burning» از نظر مصرف کنندگان میتواند گمراه کننده باشد.
محصولات جدید شامل گرانولهای قابل فوم شدن و پودرهای قابل تزریقگیری چرخشی میباشد. گرانولهای قابل فوم، به صورت اشیاء با دانسیته کم، فوم با سلولهای بسته که میتوانند توسط پیچ مانند چوب بهم وصل شوند، اکسترود میشوند. موارد استفاده آن شامل بستهای ایمنی برای تجهیزات الکتریکی، مصارف الکتریکی، قطعات برای ماشین حسابهای الکترونیکی، مبلمان، پانلهای عایق حرارتی و اجزا ایمنی اتومبیل میباشد. هر تزریق تا 200 پوند (90 kg) میتواند باشد. اشیاء بزرگ، پیچیده و بدون دوز را از طریق قالبگیری چرخشی میتوان تهیه کرد که در این روش پودر پلیمر روی دیوارههای در حال چرخش قالب ذوب میشود. پودرهای قالبگیری چرخشی، در گریدهای مقاوم در برابر uv ها تائید شده توسط FDA و مقاومت در برابر شعله وجود دارند.
متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.
دانلود فایل
دانلود مقاله کامل درباره پلیمرهای پلیکربنات (ترموپلاستیک آروماتیک)