با سلام
گزارش آزمایشگاه مقاومت مصالح
تست کمانش تیر
تعداد صفحات 11 وفرمت pdf
گزارش آزمایش کمانش
با سلام
گزارش آزمایشگاه مقاومت مصالح
تست کمانش تیر
تعداد صفحات 11 وفرمت pdf
فرمت فایل:word
تعداد صفحات:37
مشخصاتِ طراحی سازه ای :
معرفی :
بتن ها با مقاومت – بالا ، دارای برخی مشخصات و خصوصیات مهندسی هستند که با بتن های مقاومت – کم ، تفاوت دارند . تغییرات داخلی ، از بارهای ثابت ، مشخص و کوتاه – مدت و عوامل محیطی ناشی می شوند که شناخته شده هستند . رابطۀ مستقیم این تفاوتهای داخلی تمایز و تفاوت را در خصوصیاتِ مکانیکی مشخص کرده که ، باید توسط مهندسان طراح ، در پیش بینی کردن عملکرد و ایمنی سازه ها ، شناسایی شود . این تمایزها ، بسیار مهم هستند ، جهتِ افزایش مقاومت ها . تست ها و یا آزمونهای بِتُن – مقاومت بالای تقویت شده ، را بطور نمونه نشان داده اند ، که چنین موادی در بسیاری از موارد ، احتمالاً مشخصۀ الاستیکی طولی (خطی) را برای سطوح تنش و دسترسی به ماکزیمم تنش ، تعیین می کند . بنابراین ، منحنی تنش و تغییر طول نسبیِ بتنِ مقاومت – بالا ، در میزان بسیار بالا کاهش می یابد تا در بتن با مقاومت – پایین .
آزمایشات وسیع و جامعی در چندین مرکز پژوهشی ، صورت گرفت برای درک و استنباط عملکرد بتن با مقاومت بالا . در حالیکه ، اطلاعاتِ معتبر ، امروز در بسیاری از جنبه ها ، قابل دسترس هستند ، برخی از توصیه های نهایی و اصلی ، منتظر نتایج و عملکردِ آیندۀ آنان می باشد . در این مقاله ، تاکید بسیاری بر طراحیِ اعضا و سازه ها شده است . توصیه ها و پیشنهادها ، بر اساس و پایۀ بهترین اطلاعاتِ آزمایشی ، عرضه و ارائه شده اند .
ستونهای بارگیری شده بطور محوری :
در روشهای عملی ، ستونهای کمی بدرستی ، بارگیری محوری می شوند . گشتاورهای خمشی ، بعلت کاربردِ اساسیِ بارگذاری و ارتباط و همکاری با عملِ قاب محکم ، معمولاً بر بارگذاری محوری ، اضافه می شوند . AC1318-83 ، برای طراحی مورد نیاز است و ACI318R-83 ، این را منعکس می کند .هر چند ، اینها برای عملکرد ستونها و حمل کردن بارگذاری محوری ، استفادۀ مفیدی دارند .
. توزیع مقاومتِ فولادی و بتن :
ویژگی اصلی و اساسی ، مقاومت نهایی است . شیوه و روش طرح حاضر ، مقاومت صوریِ عضو بارگذاری شده بطور محوری را ، محاسبه می کند ، جهتِ بررسی و ارزیابی کردن میزانِ قانون افزایش مستقیم مقاومت مربوط به بتُتن و فولاد . توجیه این ایده ها و نظرات در تصویر 601 ، مشاهده می شود . منحنی های تنش و تغییر طول نسبی اضافه شده در فشار و تراکم برای ، سه بتن با تقویت کردن فولادی ، دارای 60.0.0 پسا (414MPa) بازده مقاومت ، می باشد . فرضیۀ معمول و متداول ، اینطور می گوید که ، فولاد و تغییر طول نسبی ، در هر مرحله بارگذاری ، یکسان هستند . برای بتن – مقاومت بالا ، زمانیکه بتن به یک محدوده یا دامنة تغییرات غیر خطیِ مهم میرسد ، فولاد هنوز در محدودة الاستیک است ، بنابراین ، شروع به بدست آوردن سهم بزرگترِ بارگذاری می کند . وقتی تغییر طول نسبی در حدود 0.002 است ، شیب منحنی بتن ، نزدیک صفر می باشد که می تواند بعنوان دفرمه شدن (بدشکلی) پلاستیسیه (شکل پذیری) ، همراه با مقدار کم و بدون افزایش تنش ، در نظر گرفته شود .
فولاد به نقطة بازدهی خویش در تغییر طول نسبی مشابه ، در این مورد می رسد . در نتیجه ، بتن در مازیمم تنش خویش می باشد و فولادر ، بنابراین مقاومت ستون به شرح ذیل ، پیش بینی می شود :
در اینجا ، معنی این عبارت بدین صورت است :
مقاومت فشردة سیلندر (استوانه) مربوط به بتن =
بازده مقاومت فولاد =
ناحیة بخشِ بتن =
ناحیة فولاد =
فاکتوریا عامل 0.85 ، برای محاسبه و برای تفاوتهای مشاهده شده در مقاومت بتن و در ستونهای مقایسه شده با بتنِ مخلوط شدة در سیلندرهای (استوانه های) – آزمون – فشاری ، صورت گرفته است . یک تجزیه و تحلیلِ مشابه ، برای ستونهای بتن – مقاومت بالا انجام گرفته ، به استثنای فولاد که بازدهی آن ، قبل از اینکه بتن به مقاومت پیکِ (اوج) خویش برسد ، انجام خواهد گرفت . هر چند ، فولاد به بازدهی خویش در تنش ثابت ادامه خواهد داد ، تا بتن بطور کامل ، عملکرد خویش را انجام دهد . امکان دارد ، پیش بینی مقاومت هنوز بر مبنای معادلة (1-6) باشد . اسناد و مدارک آزمایش نیز ، از استفادة عامل 0.85 حمایت و پشتیبانی می کنند ، برای بتن مقاومت – بالا .
تاثیرات محدودة فولاد :
فولاد جانبی در ستونها ، بطور کامل در فُرم یا شکلِ حلزونهای (مارپیچی های) مداوم و پیوسته قرار دارند که ، این فولاد دارای 2 اثر مفید بر عملکرد ستون ، می باشد : (a) موجب افزایش زیادِ مقاومتِ داخلی هستة بتن (نمونه استوانه ای بتن) در حلزون شده ، با محدود کردن هسته در برابرِ انبساط و یا گسترش جانبی تحت کنترلِ بارگذاری و (b) همینطور ظرفیت تغییر طول نسبی محوریِ بتن را افزایش می دهد و اجازه می دهد که بیشتر نرم و قابل انبساط شود (یعنی یک ستون tougher (محکم شده) .
اساس و پایة طرحِ فولاد حلزونی تحت نظارت نسخه های ( نگارش های ) AC1318 در سال 1977 ، بوده که ، تاثیر تقویت کنندة حلزونی باید حداقل برای مقاومت از بین رفتة ستون ، یکسان باشد ، البتة زمانی که به پوستة خارجی بتن ، مربوط به لاشة سنگ (سنگ هایی که به مصرف پرکردن می رسد ) ، تحت عمل بارگذاری ، نیازی نباشد .
معادلة AC1318 ، برای مینیمم نسبت حجمیِ حلزونی عبارت است از :
در اینجا :
نسبت حجمِ تقویت حلزونی برای حجم هستة بتن = Ps
ناحیه (فضای) قراص (ناخالصی) بخش بتن = Ag
ناحیة هسته بتن = Ac
مقاومتِ فشردة سلیندری بتن =
بازدة مقاومتِ فولاد حلزونی =
افزایش در مقاومت فشردة ستونها ، توسطِ فولاد حلزونی فراهم و ایجاد شده که بر مبنای روابط مشتق شده و بطور آزمایشی برای مقاومت بدست آمده ، می باشد :
در اینجا :
مقاومت فشردة ستون بتن تقویت شده ، بطور حلزونی =
مقاومت فشردة ستون بتنِ تقویت نشده =
تنش در محدودة بتن که بطور حلزونی تولید شده =
این رابطه ، می تواند مستقیماً برای معادلة (2-6) ، نشان داده شود . تنش در محدودة بتن ، که بطور حلزونی تولید شده ، بر اساسِ فولاد حلزونی محاسبه می شود ، با استفاده از معادلة کشش قیاسی (hoop).
و یا
در اینجا :
ناحیة فولاد حلزونی =
قطر هستة بتن =
شیب حلزونی = S
تحقیقات اَخیر که توسط احمد و شاه shah Ahmad , ، صورت گرفت ، تقویت حلزونی را نشان داده که ، کارآمدیی کمتری برای ستونهای بتن مقاومت بالا و ستونهای بتن سبک وزن ، دارند . آنها (احمد و شاه) همچنین دریافتند که ، تنش در فولاد حلزونی در بارگذاری پیک ، برای ستونهای بتن – مقاومت بالا و ستونهای بتن – سبک وزن ، اَغلب بطور چشمگیری کمتر است تا دربازدة مقاومت که در معادلة (2-6) ، فرض شده است . این نتیجه گیریها ، از پژوهش های آزمایشی در دانشگاه کرنل ، ناشی شده . تحقیق و پژوهش کرنل ، تأثیر یک تنش در محدوده (1-s/dc) ، استفاده کردند جهتِ ارزیابی کردن نتایج ، جاییکه ، محدودة تنش در بتن است که با استفاده از تنش واقعی در فولاد حلزونی ، محاسبه شده که اغلب ، کمتر از می باشد . عبارت یا واژة (1-s/dc) ، کاهش در کاراییِ حلزونها را منعکس می کند که ، با افزایش یافتن فاصله بندیِ سیمهای حلزونی ، مرتبط است . بنابراین ، تفسیر و توصیفِ معادلة (6-3a) ، بدین صورت است :
(6-3b)
، نتایج مربوط به تست های کرنل بر ستونها ، با استفاده از مقاومتهای مختلف بتن ، نشان می دهد . واضح است که ، مقاومت بدست آمده با معادلة (6-3d) ، قابل پیش بینی است و اعتبار یا پایایی برای بتن با وزن نرمال با همة مقاومتها در محدودة تنش ، حداقل 3000 پسا ، می باشد . یک نمودار بر مبنای معادلة (6-3a) ، پیش بینی بدون محافظه کاری را برای تنش در محدودة بالا را ، نشان می دهد ، اما همچنین می تواند تنش در محدوده را برای حلزونهای ستون ، نشان دهد که بسیار کمتر از 1000 پسا می باشد . برای این محدوده ، معادلة (6-3a) ، نتایج خوبی را ارائه کرده است . از دیدگاه مقاومت ، حضور معادلة ACI318 ، برای مینیمم نسبت فولاد حلزونی ، می تواند بطور ایمن ، استفاده شود ، البته برای ستونها با وزن و مقاومت نرمال و به همان سان برای ستونها با مقاومت – کم (پایین) . تصویر 6.2 ، نیز ، یک حلزونی را که دارای حداقل اثر محدود کننده در ستونهای بتنی – سبک وزن ، نشان می دهد . بتنِ سبک وزن ، اگر بطور سنگین بارگذاری شود ، شکسته خواهد شد و فشار حاصله را کاهش یا تخفیف می دهد . برای ستونهای سبک وزنِ تقویت شده بطور حلزونی ، مارتینز ، پیشنهاد می کند معادلة (6-3a) توسطِ جایگزین شود و معادلة (6-3a) باید توسطِ جایگزین شود . این تفاوت در میانگین عملکرد معادلة (6-2) مهم است که در ACI318 مشخص شده و باید مجدداً مورد آزمایش قرار گیرد . بنظر می رشد ، ستونهای بتنی سبک وزن نیاز به 2.5 بیشتر فولاد حلزونی دارد تا تطبیق (مطابق) کردن ستونهای وزن نرمال برای رضایت مورد نیاز مقاومت بعد از پوشش لاشة سنگ ، که به ACI318 منعکس شده ، نیاز ندارند . شاید کاربرد حلزونهای سنگین ، مورد سوال واقع شوند . هیچگونه توافق عمومی بر کارآیی فولاد حلزونی برای بهبود بخشیدن شکل پذیری ستونهای بتنی مقاومت – بالا ، وجود ندارد ، و اینکه ، افزایش یافتن تغییر طول نسبی محدود شده و مسطح شدنِ شیب منفی مربوط به منحنی تنش و تغییر طول نسبی در نقطة پیکِ تنش ، مشاهده می شود . یک مقاله مربوط به احمد شاه ، نشان می دهد که ، محدود شدن حلزونی در مسطح کردن شیب منفیِ منحنی تنش و تغییر طول نسبی ، برای ستونهای بتنی با مقاومت – بالا و همینطور ستونهای بتنی با مقاومت – پایین ، تأثیر گذار است . تحقیقات دانشگاه کرنل حاکی از آن است که ، منحنی های تنش و تغییر طول آزمایشی برای مقاومت های مختلفِ ستونهای بتنی با وزن نرمال و طبیعی با تقویت کنندة حلزونی متفاوت ، نشان داده شده است ،. سه گروه منحنی ، توسط سه سطح مقاومت بتن با مطالعه ، مشخص شده اند . هر یک از این گروهها ، از سه مجموعه منحنی ، تشکیل شده که با سه مقدارِ مختلفِ تقویتِ جانبی ، منطبق شده اند .
• مقاله با عنوان: بررسی کمانش ورق های ضخیم لایه ای کامپوزیت با استفاده از روش نوار محدود
• نویسندگان: حجت اله تن زاده ، حسین عموشاهی
• محل انتشار: نهمین کنگره ملی مهندسی عمران - دانشگاه فردوسی مشهد - 21 تا 22 اردیبهشت 95
• فرمت فایل: PDF و شامل 9 صفحه می باشد.
چکیــــده:
در این مقاله با استفاده از روش نوار محدود به بررسی کمانش ورق های ضخیم کامپوزیت پرداخته شده است. در این روش در جهت طولی از توابع مثلثاتی و در جهت عرضی برای درجات آزادی جابه جایی و چرخشی در لبه های المان از توابع چندجمله ای هرمیتی و همچنین درجات آزادی مربوط به تغییر شکل برشی و جابجایی های درون صفحه از توابع لاگرانژ استفاده شده است. تئوری برشی مرتبه اول از دقت خوبی برخوردار بوده اما محاسبه ضریب اصلاح برش برای این تئوری به دلیل دشواری در پاره ای از موارد ضرورت استفاده از تئوری های برشی مراتب بالاتر را ایجاب می کند. در این مقاله از تئوری برشی مرتبه سوم ردی استفاده شده که این تئوری نیاز به ضرائب اصلاح برش تئوری مرتبه اول را مرتفع می سازد. به کمک قضیه حداقل انرژی پتانسیل کل، کمانش چند نمونه ورق با در نظر گرفتن پارامترهای مختلفی چون نسبت مدول الاستیسیته، نسبت ابعاد به ضخامت و جهات مختلف قرارگیری الیاف بررسی می شود. و در پایان نتایج مقاله با مقالات دیگر مقایسه شده و جداول و شکل های ارائه شده صحت این نتایج را با آن ها تایید می کند.
________________________________
** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **
** درخواست مقالات کنفرانسها و همایشها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **
نوع فایل: pdf
تعداد صفحات: 100 صفحه
نکته مهم: برای دریافت فایل پایان نامه به صورت word «قابل ویرایش» با ما تماس بگیرید.
پایان نامه برای دریافت درجه ی کارشناسی ارشد «M.SC»
چکیده:
بادبند، به عنوان نوعی سیستم کنترل غیر فعال، میتواند نقش موثری در ایجاد مقاومت سازه در برابر نیروهای جانبی مانند زلزله داشته باشد. یکی از روش های بهره گیری بیشتر و اقتصادی تر از قابلیت بادبند ها استفاده از ظرفیت غیر ارتجاعی آنها است. بادبند های معمولی تحت کشش دارای عملکرد خوبی هستند، ولی در زیر فشار دچار کمانش شده، شکل پذیری خوبی ندارند. بادبند های کمانش ناپذیر برعکس با جلوگیری از کمانش پیش از تسلیم بادبند باعث افزایش شکل پذیری می شوند.. جلوگیری از کمانش در این نوع بادبند با محصور نمودن هسته فولادی بادبند در بتن که بهنوبه خود در یک مقطع فولادی قرار گرفته است، انجام می شود. بدین ترتیب بادبند در فشار و کشش بطور مشابه عمل میکند. بدین جهت بادبندهای کمانش ناپذیر قابلیت استهلاک انرژی بیشتری داشته و باعث افزایش ایمنی سازه میشوند. از طرف دیگر چون نحوه کاربرد این نوع بادبند شبیه بادبند های معمولی است، استفاده از آن در سازه ها نیازمند تکنولوژی جدیدی نمی باشد قاب های مهاربندی شده با المان های کمانش ناپذیر (BRBF) به عنوان یک سیستم مقاوم لرزه ای شناخته می شوند. با توجه به این مقدمات، بررسی بادبند های کمانش ناپذیر به منظور ارتقای کیفیت و کارایی آنها و بومی کردن تکنولوژی مربوطه در کشور لرزه خیزی مانند ایران حائز اهمیت بوده، در این پایان نامه مورد توجه است .
در این تحقیق نوع روش بصورت تئوری و غیر آزمایشگاهی بوده است . به دلیل عدم دسترسی به سازه و بادبندهای BRB واقعی، رفتار آنها با استفاده از یک نرم افزار شبیه سازی مثل abaquse مورد شبیه سازی قرار گرفته تا بتوان رفتار قاب و همچنین سایر کنترلر های قبلی را روی این سازه مورد بحث و بررسی قرار داد. به منظور بررسی عملکرد مهاربندهای کمانش ناپذیر، یک مدل اجزای محدود از این المان ارائه شده است. بعد از معرفی اجزاء با در نظر گرفتن تمامی مواد Abaquse مهاربندهای کمانش ناپذیر، یک نمونه از این نوع مهاربند در نرم افزار اجزاء محدود مورد استفاده مدلسازی میشود. بعد از تأیید مدل نمونه واقعی با استفاده از نتایج آزمایشگاهی در دسترس که توسط تحلیل غیر خطی دینامیکی صورت میپذیرد، مدل ساده مورد نظر ساخته میشود این قاب تحت بارگذاری سیکلیک محوری مورد آنالیز قرار گرفته و قاب با هر دو نوع مهاربند تحت تحلیل قرار گرفته و نتایج با هم مقایسه می شود و روشی برای تهیه یک مدل ساده از مهاربندهای کمانش ناپذیر ارائه میگردد. در مطالعه حاضر رفتار مهاربند BRB بعنوان میراگر هیسترتیک بررسی و عملکرد مطلوبی در جذب انرژی مشاهده گردید
مقدمه:
قاب های فولادی مهاربندی شده هم محور یکی از متداول ترین سیستم های قاب فولادی مقاوم خمشی محسوب می شود. به طور کلی قاب های مهاربندی شده هم محور نسبت به بسیاری از سیستم های مقاوم خمشی دارای کارایی بالایی می باشد که دلیل آن توانایی اعضای مهاربند در کنترل تغییرمکان های جانبی قاب می باشد. فولاد مورد استفاده برای تیرها و ستون های قاب های مهاربندی شده هم محور به لحاظ استفاده از اشکال هندسی ظریف و محاسباتی، از نظر اقتصادی نیز بسیار مقرون به صرفه می باشند. طراحان ساختمان نیز اغلب از قاب های مهاربندی شده آماده در محاسبات استفاده می کنند.
یکی از مهمترین نقاط ضعف این نوع مهاربندها مقاومت کمانشی پایین به دلیل لاغری اعضای مهاربند میباشد. انرژی بسیار شدید و ناگهانی که در حین وقوع زمین لرزه به اعضای مهاربند وارد می شود می تواند باعث کمانش و تغییرشکل غیر ارتجاعی بزرگ در مهاربند و اتصالات آن گردد. لذا رفتار نامطلوب عمده ای که در مهاربندها مشاهده می شود کمانش مهاربند فشاری می باشد و این امر باعث کاهش شکل پذیری و ظرفیت استهلاک انرژی در سازه به دلیل اثر ثانوی تغییرشکل های غیرخطی هندسی می گردد . این موضوع در بارگذاری های تناوبی مانند زلزله با توجه به ماهیت کاهش بیشتر سختی تحت بارهای دینامیکی لرزهای، از اهمیت ویژه ای برخوردار می باشد. استفاده از مهاربندی که در فشار و کشش رفتار یکسانی داشته باشد و کمانش نکند ، همیشه مطلوب طراحان سازه بوده است. در حقیقت بهسازی قاب های سازه ای با این روش، رفتارهای نامناسب زیر را اصلاح می کند:
فهرست مطالب:
فصل اول : مقدمه و اهداف
1-1- مقدمه
1-2- اهداف تحقیق
1-3- مباحث پایان نامه
فصل دوم : مروری بر تحقیقات مرتبط
2-1- مقدمه
2-2- مروری بر مطالعات آزمایشگاهی و تحلیلی
فصل سوم : مروری بر ادبیات فنی
3-1- مقدمه
3-2- مهاربندها
3-3- عملکرد مهاربندهای همگرا و واگرا
3-4- نحوه جایگذاری مهاربندها
3-5- مهاربندهای کمانش ناپذیر
3-6- اجزای تشکیل دهنده مهاربند کمانش ناپذیر
3-6-1- هسته فلزی محصور شده
3-6-2- هسته فلزی محصور نشده
3-6-3- ماده نچسب
3-6-4- ناحیه اتصال
3-6-5- غلاف محصور کننده
فصل چهارم : روش مدلسازی اجزای محدود قاب مهاربندی کمانش ناپذیر
4-1- مقدمه
4-2- مروری بر روش اجزای محدود
4-3- معرفی اجمالی نرم افزار اجزای محدود Abaqus
4-4- فرآیند مدلسازی در نرم افزار اجزای محدود Abaqus
4-5- مدلسازی اجزای محدود مهاربند فولادی
4-6- پیکربندی هندسی مهاربند فولادی در محیط نرم افزار
4-7- مدلسازی المان های تشکیل مهاربند فولادی
4-8- روش مدلسازی مصالح تشکیل دهنده مهاربند فولادی
4-9- مدلسازی رفتار تماسی بین فولاد و مصالح پرکننده بتنی
4-10- روش بارگذاری و ایجاد شرایط مرزی
4-11- روش مش بندی مهاربند فولادی
4-12- روش آنالیز و استخراج نتایج تحلیل
فصل پنجم : مقایسه رفتار مهاربند کمانش ناپذیر و معمولی به روش اجزای محدود
5-1- مقدمه
5-2- معرفی مدل های اجزای محدود مورد بررسی
5-3- بررسی رفتار عضو مهاربند کمانش ناپذیر و مهاربند معمولی
5-4- بررسی رفتار قاب با مهاربند کمانش ناپذیر و مهاربند معمولی
فصل ششم: نتیجه گیری کلی و پیشنهادات
6-1- مقدمه
6-2- نتیجه گیری نهایی
6-3- پیشنهادات برای تحقیقات آتی
فهرست مراجع
فهرست اشکال:
شکل 2-1- جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Sabelli, R, Mahin, S, Chang, C, 2003)
شکل 2-2- پیکر بندی ساختمان مورد مطالعه توسط(Sabelli, R, Mahin, S, Chang, C, 2003)
شکل 2-3- جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط(Kiggins, S, Uang, C, 2006)
شکل 2-4- نمای هندسی ساختمان مورد مطالعه توسط(Kiggins, S, Uang, C, 2006)
شکل 2-5- شکل مقطع عرضی ساختمان مورد مطالعه توسط(Choi, H, Kim, J, 2006)
شکل 2-6- جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Asgarian, B, Shokrgozar, HR, 2008)
شکل 2-7- پیکر بندی پلان ساختمان مورد مطالعه توسط (Asgarian, B, Shokrgozar, HR, 2008)
شکل 2-8- جزئیات قاب و مهاربند کمانش ناپذیر مورد مطالعه توسط (Chou, C, Chen, P, 2009)
شکل 2-9- پیکر بندی قاب مورد مطالعه توسط (Nguyen, A, Chintanapakdee, C, Hayashikawa, T, 2010)
شکل 2-10- جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Wigle, V, Fahnestock, L, 2010)
شکل 2-11- شکل قاب مهاربندی کمانش ناپذیر مورد مطالعه توسط (Wigle, V, Fahnestock, L, 2010)
شکل 2-12- جزئیات مهاربند کمانش ناپذیر مورد مطالعه توسط (Yu, YJ, et al, 2011)
شکل 2-13- شکل مدل اجزای محدود مورد مطالعه توسط (Yu, YJ, et al, 2011)
فصل سوم
شکل 3-1- مهاربندهای همگرا
شکل 3-2- مهاربندهای واگرا
شکل 3-3- رفتار چرخه ای پایدار مهاربند کمانش ناپذیر در مقابل مهاربند کمانش یافته
شکل 3-4- اجزای مختلف مهاربند مقید شده در برابر کمانش
شکل 3-5- اشکال مختلف هسته فولادی و محفظه محصور کننده
شکل 3-6- نمایش قسمت محصور نشده فولادی
شکل 3-7- نمایش فضای خالی داخلی به منظور رفتار مطلوب مهاربند درکشیدگی و فشردگی فولاد هسته
فصل چهارم
شکل 4-1- منحنی تنش - کرنش مصالح فولادی در قاب مهاربندی کمانش ناپذیر
شکل 4-2- منحنی تنش - کرنش فشاری بتن مورد استفاده برای مصالح پرکننده
شکل 4-3- منحنی تنش - کرنش کششی بتن مورد استفاده برای مصالح پرکننده
شکل 4-4- جزئیات اعمال بارگذاری نمونه اولیه قاب مهاربندی کمانش ناپذیر
شکل 4-5- شکل مش بندی شده نمونه اولیه قاب مهاربندی کمانش ناپذیر
فصل پنجم
شکل 5-1- قاب مهاربندی کمانش ناپذیر مورد مطالعه با مقیاس کامل
شکل 5-2- مهاربند کمانش ناپذیر مورد مطالعه
شکل 5-3- نمای سه بعدی مدل a1 به صورت مهاربند معمولی
شکل 5-4- نمای سه بعدی مدل a2 به صورت مهاربند کمانش ناپذیر
شکل 5-5- کانتور تنش مهاربند معمولی
شکل 5-6- کانتور تنش مهاربند کمانش ناپذیر
شکل 5-7- شکل انحنای به وجود آمده در مهاربند معمولی
شکل 5-8- توزیع تنش در مقطع فولادی در مهاربند کمانش ناپذیر
شکل 5-9- نمودار بار - جابجایی مدل a1 و a2
شکل 5-10- نمای سه بعدی مدل a3 به صورت قاب با مهاربند معمولی
شکل 5-11- نمای سه بعدی مدل a4 به صورت قاب با مهاربند کمانش ناپذیر
شکل 5-12- کانتور تنش قاب فولادی با مهاربند معمولی
شکل 5-13- کانتور تنش قاب فولادی با مهاربند کمانش ناپذیر
شکل 5-14- نمودار برش پایه - جابجایی مدل a3 و a4
منابع و مأخذ:
[1] American Institute of Steel Construction, Inc. (AISC). (1999). Load and Resistance Factor Design Specification for Structural Steel Buildings. AISC, Chicago, IL, December 27.
[2] American Society for Testing and Materials (ASTM). (2003). Annual Book of ASTM Standards, Metals Test Methods and Analytical Procedures. Section 3, Vol. 3.01, West Conshohocken, Pennsylvania.
[3] Barsom, J. M., and Rolfe, S. T. (1999). Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics. Third Edition, ASTM, West Conshohocken, PA.
[4] Bruneau, M., Tremblay, R., Timler, P., and Filiatrault, A. (1995). Performance of steel structures during the 1994 Northridge earthquake. Canadian Journal of Civil Engineering, volume 22, number 2, pages 338-360.
[5] Elghazouli, A. Y. (2003). Seismic design procedures for concentrically braced frames. Proceedings of the Institution of Civil Engineers: Structures and Buildings. volume 156, issue 4. Pages 381-394.
[6] Elsesser, E. (1986). A survey of seismic structural systems and design implications. ATC-17, Proceedings of a Seminar and Workshop on Base Isolation and Passive Energy Dissipation, San Francisco, CA, pages 51-62.
[7] El-Tayem, A. A., and Goel, S. C. (1986). Effective Length Factor for the Design of X-bracing Systems. Engineering Journal, AISC, vol. 24, page 41-45.
[8] El-Tayem, A. A., and Goel, S. C. (1986). Cyclic Load Behavior of Angle X-Bracing. Journal of Structural Engineering, vol. 112, Issue 11, pages 2528-2539.
[9] Eurocode 8. (1998). Structures in Seismic Regions, Part 1.1: General Rules and Rules for Buildings. Commision of the European Communities, European Committee for Standardisation, ENV 1998-1-1.
[10] Hanson, R., and Higginbotham, A. B. (1976). Axial hysteretic behavior of steel members. ASCE, Journal of the Structural Division, volume 102, number 7, pages 1365-1381.
[11] Hassan, O. F., and Goel, S. C. (1991). Modeling of Bracing Members and Seismic Behavior of Concentrically Braced Steel Structures. Research Report No. UMCE 91- 1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.
[12] Higginbotham, A. B. (1973). The Inelastic Cyclic Behavior of Axially-Loaded Steel Members. Report No.UMEE-73R1, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan.
[13] Ikeda K. and Mahin S. A. (1984). Phenomenological modeling of steel braces under cyclic loading. Report no. UCB/EERC 84/09, Earthquake Research Center, University of California, Berkeley, CA.
[14] Ikeda K. and Mahin S. A. (1984). A refined physical theory model for predicting the seismic behavior of braced steel frames. Report no. UCB/EERC 84/12, Earthquake Research Center, University of California, Berkeley, CA.
[15] Kathib I. F., Mahin, S. A. (1987). Dynamic inelastic behavior of chevron braced steel frames. Fifth Canadian Conference on Earthquake Engineering, Balkema, Rotterdam, pages 211-220.
[16] Kim, H. I., and Goel, S. C. (1996). Upgrading of Braced Frames for Potential Local Failure. Journal of Structural Engineering, May 1996, pages 470-475.
[17] Leowardi, L. S., Walpole, W. R. (1996). Performance of steel brace members. Research Report no. 96-03, Christchurch, New Zealand: Department of Civil Engineering, University of Canterbury.
[18] Naeim, F. (1989). The Seismic Design Handbook. Structural Engineeging Series, Van Nostrand Reinhold, New York.
[19] Nakashima, M., and Wakabayashi, M. (1992). Analysis and design of steel braces and braced frames in buildings structures. Stability and ductility of steel structures under cyclic loading, pages 309-321.
[20] Perotti, F., and Scarlassara, P. (1991). Concentrically Braced Steel Frames under Seismic Actions: Non-linear Behavior and Design Coefficients. Earthquake Engineering and Structural Dynamics, vol. 20, pages 409-427.
[21] Remennikov, A., and Walpole W. (1995). Incremental model for predicting the inelastic hysteretic behavior of steel bracing members. Research Report no. 95-6. Department of Civil Engineering, University of Canterbury, Christchurch, New Zeland.
[22] Shing, P., Bursi, O., and Vannan, T. (1994). Pseudodynamic test of a concentrically braced frame using substructuring techniques. Journal of Constructional Steel Research, volume 29, number 1-3, pages 121-148.
[23] Wakabayashi, M., Nakamura, T., and Yoshida, N. (1977). Experimental Studies on the Elastic-Plastic Behavior of Braced Frames under Repeated Horizontal Loading. Bulletin, Disaster Prevention Research Institute, Kyoto University, vol. 27, no. 251, pages 121-154.
[24] Yanev, P, Gillengerten, J. D., and Hamburger, R. O. (1991). Performance of Steel Buildings in Past Earthquakes. American Iron and Steel Institute (AISI) and EQE Engineering, Inc.
محل انتشار: دهمین کنگره بین المللی مهندسی عمران تبریز
تعداد صفحات: 8
نوع فایل : pdf