فرمت فایل : word(قابل ویرایش)تعداد صفحات18
مولفههای اصلی Principle component
در بیشتر مسائل عملی مشاهدات بصورت تعداد زیادی متغیرهای همبسته میباشند برای تحلیل اینگونه مشاهدات به دنبال روشهای آماری هستیم که بدون اینکه اطلاعاتی را از دست داده باشیم بعد مسأله را تا حد قابل ملاحظهای کاهش دهیم در حقیقت با کنار گذاشتن متغیرهای با واریانس پایین و توجه به متغیرهای با واریانس بالا میتوانیم به راحتی مسأله را در یک زیر فضایی با بعد کمتر مورد مطالعه قرار دهیم.
بردار تصادفی X را با بردار میانگین و ماتریس کواریانس یک بردار p بعدی در نظر می گیریم. مولفههای اصلی x عبارتند از ترکیبات خطی استاندارد شده مولفه های x که بر حسب واریانس ها ویژگیهای خاصی دارند.
وزنهایی که در مولفه های اصلی به بردار تصادفی x مربوط میشوند و دقیقاً بردارهای ویژه استاندارد شده ماتریس کواریانس x هستند ریشههای ماتریس مشخصه کواریانس برابر مولفههای اصلی میباشند و بزرگترین ریشه برابر واریانس اولین مولفه اصلی است. برای X هیچ توزیعی فرض نمیکنیم تنها شرط لازم برای تحلیل مولفههای اصلی این است که متغیرهای اصلی همبستگی معنیداری داشته باشند.
دانلود مقاله مولفههای اصلی Principle component