اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پروژه شبیه سازی رآکتور سنتز متانول

اختصاصی از اس فایل دانلود پروژه شبیه سازی رآکتور سنتز متانول دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه شبیه سازی رآکتور سنتز متانول


دانلود پروژه شبیه سازی رآکتور سنتز متانول

 

تعداد صفحات : 76 صفحه      -       

قالب بندی :  word             

 

 

 

عناوین:

فصل اول :متانول ،خواص و روشهای تولید 1-1-تاریخچه

1- 2- خصوصیات فیزیکی Physical properties

1-3-  واکنشهای شیمیایی 1-4- تولید صنعتی و فرآیند آن 1-5-ماده خام 1-5-1-گاز طبیعی

1-5-2-باقیمانده های نفتی

1-5-3-نفتا 1-5-4-ذغال سنگ 1-6-کاتالیست 1-7-تولید در مقیاس تجاری 1-8-واکنشهای جانبی 1-9-خالص سازی

1-10-کاربردهای متانول:

1-10-1-1- تولید اسید استیک:

1-10-1-2-کاربرد اسید استیک در صنایع:

1-10-2-تولید وینیل استات:

1-10-3-فرمالدئید:

1-10-4-اتیلن گلیکول:

1-10-5-متیل آمین:

1-10-6-دی متیل اتر:

1-10-7- ترکیبات کلرومتان :

1-10-8-متیل ترشری بوتیل الکل(MTBE)

1-10-9-کاربرد متانول در مخلوط با بنزین:

 

 

فصل دوم: سینتیک و مکانیسم واستوکیومتری

2-1-اصول واکنشهای کاتالیستی

2-1-1-مراحل مستقل در واکنشهای کاتالیستی

2-1-2-سینیتیک ومکانیسم واکنشهای کاتالیستی

2-1-3-اهمیت جذب سطحی در واکنشهای کاتالیستی هتروژن

2-1-4-بررسی سینتیکی

2-1-5-مکانیسم واکنشهای کاتالیستی هتروژن فاز گاز

2-1-5-1-مکانیسم Langmuir- Hinshelwood (1421 )

2-1-5-2-مکانیسم Eley –Rideal

2-2-ترمودینامیک و سینتیک سنتز فشار پائین متانول

2-1-1- مقدمه

2-1-2- استوکیومتری و ترمودینامیک

2-1-3- سینتیک و مکانیسم

Klier

Graff

Skrzypek

 

2-1-4- مکانیسم

فصل سوم: شبیه سازی واکنش کاتالیستی هتروژنی توسط Hysys

3-1- مدل سینتیکی

3-2-مراحل شبیه سازی رآکتور در Hysys

3-3--نتایج حاصله از شبیه سازی

منابع

 

 

فصل اول :متانول ،خواص و روشهای تولید  

1-1-تاریخچه [1]

     مصریان باستان جهت مومیایی کردن ازمخلوطی استفاده می کردند که شامل متانول نیزبود،که آنرا از پیرولیز چوب به دست آورده بودند با این وجود متانول خالص برای اولین بار توسط رابرت بویل در 1661 جدا سازی شد، که او آنرا Spirit of box  نامید. زیرا در تهیه آن از چوب صندوق استفاده کرده بود که بعداً به Piroxilic Spirit  معروف شد. در سال 1834 ، شیمیدانان فرانسوی آقایانJean -Baptiste وEugene Peligot  عناصر تشکیل دهندة آنرا شناسایی کردند ،آنها همچنین لغت methylene را به شیمی آلی وارد کردند که واژه methu به معنای شراب واژه hyle به معنای چوب بود. سپس در سال 1840 واژه methyl  از آن مشتق شد و جهت توصیف Methyl Alcohol  استفاده شد. سپس این نام در سال 1892 به وسیله کنفرانس بین المللی نامگذاری مواد شیمیایی بهMethanol کوتاه شد.

   در1923،دانشمند آلمانیMattias Pier که برای شرکتBASFکارمی کرد،  طرحی را جهت تولید متانول از گاز سنتز (مخلوطی از اکسیدهای کربن و هیدروژن که از زغال به دست می آمد و در سنتز آمونیاک نیز کاربرد دارد ) ارائه کرد. که در آن از کاتالیست روی- کرم استفاده می شد و شرایط سختی از نظر فشاری (1000 الی300  اتمسفر) و دما (بالای ) داشت. تولید مدرن متانول هم اکنون توسط کاتالیست هایی که امکان استفاده از شرایط دمایی کمتر را دارند، ممکن است.

 

 

 

متانول ( متیل الکل ) به فرمول  یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانة‌ تن متریک رتبه 21 را در بین محصولات شیمیایی صنعتی داراست متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانولی که از چوب تهیه شده باشد مواد آلوده کنندة‌ بیشتری ( مانند استیلن ،‌ اسید استیک ، الکل الیل ) دارد تا الکلهای صنعتی امروزی . 

      برای سالهای متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .

 

1- 2- خصوصیات فیزیکی Physical properties [1]

خصوصیات فیزیکی متانول در جدول 1 داده شده است .

 

 

 

 فشار بخار متانول از  تا  با معادله زیر داده می شود .

 

    که درآن فشاربرحسب kpa ( معادل 7.5mmHg) ودما برحسب درجه کلوین است.

 

1-3-  واکنشهای شیمیایی [1]

    متانول معمولا در واکنشهایی شرکت می کند که از نظر شیمیایی در دسته واکنشهای الکلی قرار می گیرند از مواردی که از نظر صنعتی اهمیت ویژه أی دارد هیدروژن زدایی و هیدروژن زدایی اکسایشی متانول و تبدیل به فرم آلدئید برروی کاتالیست نقره یا مولیبدن – آهن و همچنین تبدیل متانول به اسید استیک بر روی کاتالیست کبالت یا روبیدیوم است .

     از طرفی دی متیل اتر (DME) از حذف آب متانول توسط کاتالیست اسیدی قابل تولید است. واکنش ایزوبوتیلن با متانول که توسط کاتالیزور اسیدی انجام می شود و منجر به تولید متیل توشیو بوتیل اتر می شود ( که یک افزایندة‌ مهم عدد اکتان بنزین است ) کاربرد فزاینده أی دارد .

    تولید متیل استرها با کاتالیزور اسیدی از اسیدهای کربوکسیلیک و متانول انجام می شود که در آن جهت کامل کردن واکنش از استخراجی آزئوتروپی آب استفاده می شود .

   متیل هیدروژن سولفات ،‌ متیل نیترات و متیل هالیدها از واکنش متانول با اسیدهای غیر آلی مربوطه تولید می شوند .

   مونو- ،‌ دی– و تری- متیل آمین از واکنش مستقیم آمونیاک با متانول به دست می آیند .

1-4- تولید صنعتی و فرآیند آن [1]

    اولین و قدیمی ترین روش تولید عمده متانول تقطیر تخریبی چوب بود که از اواسط قرن نوزدهم تا اوایل قرن بیستم به صورت عملی انجام می شد و هم اکنون در ایالات متحده دیگر انجام نمی شود. این روش تولید با توسعه فرآیند سنتز متانول از هیدروژن و اکسیدهای کربن،‌ در دهه 1920 کنار گذاشته شد .

   متانول همچنین به عنوان یکی از محصولات اکسیداسیون غیر کاتالیستی هیدروکربنها تولید می شد. تجربه أی که از سال 1973 کنار گذاشته شد .

     متانول را همچنین می توان به عنوان یک محصول فرعی فرآیند           Fisher-Tropsch به دست آورد تولید مدرن متانول در مقیاس صنعتی منحصراً بر پایه سنتز آن از مخلوط پر فشار هیدروژن ،‌ دی اکسید کربن و منوکسید کربن در حضور کاتالیست فلزی هتروژنی است .

تولید مدرن در مقیاس صنعتی متانول امروزه منحصرا از مخلوط پر فشار گازهای هیدروژن و اکسیدهای کربن بر روی کاتالیت فلزی است.فشار گاز سنتز به اکتیویته کاتالیست مورد استفاده ،‌ بستگی دارد .

   طبق توافق حاصل شده،‌ تکنولوژیهایی تولید متانول به صورت زیر دسته بندی شده اند :فرآیندهای فشار پائین (5-10 Mpa) ،‌ فرآیندهای با فشار میانی (10-25 Mpa) و فرآیندهای فشار بالا (25-35 Mpa).

    در 1923 شرکت BASF درآلمان اولین سنتزتجاری متانول را آغازکرد. در این فرآیند از سیستم کاتالیستی اکسید روی–اکسید کرم بهره گرفته شده بود . که این واقعه را آغاز تکنولوژی تولید فشار بالا می توان برشمرد .

   در سال1927 در یک تلاش جداگانه تولید فشار بالای متانول در واحدهای متعلق به شرکت های Dupont و Commercial Sovents ‎آغاز شد .

   در سال 1965 یک واحد مدرن تولید متانول با ظرفیتی در حدود 225-450 t/d ،‌ در فشار 35 Mpa به طور خالصی گاز طبیعی به ازاء‌ تولید یک تن متانول مصرف می کرد که برای فشارهای بالاتر از 21 Mpa از کمپرسورهای پیستونی استفاده می شد .

   در اواخر دهه 1960 تکنولوژی تولید فشار میانی و فشار پائین متانول با استفاده از کاتالیست با دوام و اکتیو مس – اکسید روی به صورت عملی مورد بهره برداری قرار گرفت .

شرکت ICI    Ltd. در انگلستان ،‌ سنتز فشار پائین متانول را در اواخر سال 1966 آغاز کرد که در آن سال یک واحد تولیدی با ظرفیت 400 t/d در فشار 5Mpa فقط از کمپرسورهای سانتریفوژ استفاده می کرد .

در سال 1971 شرکت Lurgi به صورت آزمایشی یک واحد تولیدی فشار پائین با ظرفیت 11 t/d که از کاتالیست مس استفاده می کرد ،‌ احداث نمود .

    مزیتهای تکنولوژی های فشار پائین در کاهش توان مصرفی جهت افزایش فشار،‌ عمر طولانی تر کاتالیست ها و ظرفیت تولید بیشتر بود که در کنار آن می توان به ظرفیت single–train بیشتر و اطمینان از عملکرد اشاره کرد ،‌ که با فشار بالا در تناقض هستند.

  از سال 1970 به بعد علی رغم برخی استثناء‌ها هرگونه توسعه واحدهای تولید متانول با استفاده تکنولوژی فشار پائین یا میانی بوده است. درسال 1980 ،‌ 55% تولید متانول در ایالات متحده با استفاده از سنتز فشار پائین بوده و ازآن به بعدواحدهای فشار بالا با تکنولوژی فشار پائین اصطلاحاً “revamp” شده اند، یا اینکه به کل تعطیل شدند . 

   یک واحد معمول تولید فشار پائین – میانی در سال 1980 با ظرفیت        1000-2000t/d در فشاری در حدود 8-10 Mpa عمل می کند و در یک فرآیند single – train فقط از کمپرسورهای سانتریفیوژ بهره می برد و جهت تولید 1 تن متانول  گاز طبیعی مصرف می کند .

 

 


دانلود با لینک مستقیم


دانلود پروژه شبیه سازی رآکتور سنتز متانول

سمینار کارشناسی ارشد شیمی بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو

اختصاصی از اس فایل سمینار کارشناسی ارشد شیمی بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو دانلود با لینک مستقیم و پر سرعت .

سمینار کارشناسی ارشد شیمی بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو


سمینار کارشناسی ارشد شیمی بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو

این محصول در قالب پی دی اف و 107 صفحه می باشد.

این سمینار جهت ارائه در مقطع کارشناسی ارشد شیمی-فرآیند طراحی و تدوین گردیده است. و شامل کلیه موارد مورد نیاز سمینار ارشد این رشته می باشد. نمونه های مشابه این عنوان با قیمت بسیار بالایی در اینترنت به فروش می رسد.گروه تخصصی ما این سمینار را با قیمت ناچیز جهت استفاده دانشجویان عزیز در رابطه به منبع اطلاعاتی در اختیار شما قرار می دهند. حق مالکیت معنوی این اثر مربوط به نگارنده است. و فقط جهت استفاده از منابع اطلاعاتی و بالا بردن سطح علمی شما در این سایت قرار گرفته است.

چکیده:

گاز سنتز از گازهای هیدروژن و مونواکسیدکربن تشکیل شده است، تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است. نتایج این تحقیقات نش ان می دهد که استفاده از راکتور پلاسمای الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد. انواع راکتورهای پلاسمایی که تا کنون برای تولید گاز سنتز توسط محققان به کار رفته، عبارتند از: راکتورهای تابشی، هاله، آرام، رادیوفرکانسی و مایکروویو. راکتورهای پلاسمایی مایکروویو به دلیل ع ملکرد در محدوده وسیعی از فشار و سادگی عملکرد و قابلیت تنظیم پارامترهای
عملیاتی بر حسب خوراک ورودی، بهترین انتخاب برای استفاده به عنوان راکتورهای پلاسمای شیمیایی گاز سنتز می باشد.

مقدمه:

برای تبدیل موثر منابع انرژی معمولا از متان برای تولید مواد واسطه یا محصولات با ارزشی از قبیل گاز سنتز (H3+CO) و اتیلن (C2H4) متانول (CH3 OH) و فرمالدهید (CH2٢O) استفاده می گردد. برای تبدیل متان به گاز سنتز از واکنش هایی از قبیل اکسیداسیون جزئی متان، تبدیل متان با بخار و تبدیل با دی اکسید کربن استفاده می شود. این واکنش ها روشهای اصلی برای تولید محصولات بعدی از قبیل: متانول، تولید آمونیاک، سنتز فیشر – تراپش می باشند. تخمین زده شده است که تقریباً 60 – 70% هزینه های صرف شده در واکنش های تبدیل متان به تهیه گاز سنتز اختصاص داده شده است.

تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است نتایج این تحقیقات نشان می دهد که استفاده از راکتور پلاسما الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد.

انرژی الکتریکی عاملی بسیار مناسب و تکمیلی برای فعال کردن مواد شیمیایی و شروع واکنش ها محسوب می شود. ایجاد تخلیه الکتریکی در گاز ذرات بسیار فعالی از جمله الکترون ها، یون ها، اتم ها، رادیکال ها و مولکول ها بر انگیخته به وجود می آیند که به عنوان کاتالیست برای تولید محصولات عمل می کنند.

تبدیل غیر کاتالیستی متان به وسیله تخلیه الکتریکی از قبیل: هاله رادیو فرکانسی (RF)، فرکانس های پالسی بالا، مایکروویو (MW) و DBD به مرحله اجرا در آمده است.

پلاسمای مایکروویو معمولاً درفرهای مایکروویو، رسوب الماس، تولید IC و ایجاد چگالی بالای پلاسما و انرژی متوسط الکترون می تواند به کار برده شود. استفاده این نوع پلاسما در محدوده تغییرات وسیعی از فشار و شدت جریان ورودی گاز و شرایط عملیاتی آسان و در درون راکتورهای بدون الکترود که دیگر باعث خوردگی الکترودها و آلودگی و مسمومیت آنها می گردد، باعث شده است که استفاده آن جذاب تر از پلاسماهای دیگر گردد.

در بخشهای آینده ابتدا کلیات موضوع و سپس به شرح مفهوم پلاسما می پردازیم و واکنش هایی را که در پلاسمای مایکروویو انجام ش ده و تولید گاز سنتز در این پلاسما را مورد بررسی قرار می دهیم. سپس عوامل و پارامترهای موثر بر عملکرد راکتورهای پلاسمای مایکروویو در تولید گاز سنتز و در انتها راکتورهای پلاسمای دیگر در تولید این گاز و نتیجه گیری و پیشنهادات را مورد بحث و بررسی قرار می دهیم.

فصل اول: کلیات

1-1- هدف

برای تبدیل متان معمولاً از کاتالیزورهای بسیار فعال از قبیل: pt,pd,Ir,co,Ni بر روی پایه Tio2,AL2o3 و یا الماس های اکسید شده (oxidized diomand) در دمای بالا (k 1300 – 1000) و فشار بالا (15 – 30 atm) انجام می شود. بنابر این هدف ایجاد گزینه های سازگار با محیط زیست و مقرون به صرفه از لحاظ اقتصادی که می تواند شرایط عملیاتی دمایی – فشار و پرهیز از مشکل رسوب کربن به عنوان سم کاتالیزوری را حل کند می باشد.

تحقیقات بسیاری بر روی روشهای پیشرفته و جدید تولید گاز سنتز انجام شده است نتایج این تحقیقات نشان می دهد که استفاده از راکتور پلاسما الکتریکی برای تولید گاز سنتز یک تکنولوژی پیشرفته با بازده بالا و محافظ محیط زیست می باشد.

بنابراین انواع مختلف راکتورهای پلاسما برای تولید گاز سنتز مورد مطالعه قرار گرفته اند، با توجه به خصوصیات انواع پلاسما به طور کلی راکتورها پلاسمای تابشی به دلیل فشار کم عملیاتی و در نتیجه محدود بودن شدت جریان خوراک ورودی به راکتور برای تبدیل به راکتور شیمیایی در مقیاس های صنعتی مناسب نیستند. در راکتورهای پلاسمای هاله بر مشکل فشار عم لیاتی پایین غلبه می کنیم (فشار عملیاتی این راکتورها اتمسفر می باشد) اما به دلیل خاصیت غیر همگن بودن تخلیه الکتریکی در این نوع راکتور حجم فعال شیمیایی بسیار کم است (فضای کوچکی در نزدیکی الکترود نقطه) بنا بر این استفاده از این نوع پلاسما نیز به عنوان راک تور شیمیایی در مقیاس بزرگ صنعتی مناسب نمی باشد. در تخلیه الکتریکی آرام بر مشکل فشار پایین و حجم کم فعال غلبه شده است در نتیجه این نوع تخلیه الکتریکی برای استفاده در مقاصد صنعتی بسیار مناسب به نظر می رسد، اما مشکل اساسی این نوع راکتورها محدودیت فضای بین ا لکترودها است برای غلبه بر این مشکل برای ساخت راکتورهای DBD در مقیاس بزرگ برای تولید گاز سنتز از راکتورهای لوله ای موازی استفاده شده است. انواع دیگر راکتورهای پلاسما شیمیایی راکتورهای ICP یا همان راکتورهای مایکروویو و رادیو فرکانسی می باشند. در راکتورهای RF با توجه به محدوده پایین فشار عملیاتی برای پایداری پلاسما به ایجاد فشارهای پایین احتیاج است که از لحاظ عملیاتی در مقیاسهای بزرگ مشکل ساز می باشد. اما راکتورهای MW از آنجاییکه این نوع پلاسما در محدوده وسیعی از فشار پایدار باقی می مانند و سادگی عملک رد آنها و قابلیت تنظیم پارامترهای عملیاتی بر حسب خوراک ورودی بهترین انتخاب برای استفاده به عنوان راکتورهای پلاسما شیمیایی گاز سنتز می باشند.

نتایج تحقیقات نشان می دهد تبدیل پلاسمایی گاز طبیعی به گاز سنتز با توجه به تئوری پیچیده پلاسما هنوز از جهات بسیاری در ابهام می باشد و تجربیات کمی تا کنون در این زمینه انجام شده است. از جمله مهمترین مشکلات انتخاب گاز اکسید کننده مناسب برای اکسیداسیون متان و تولید گاز سنتز می باشد.

تبدیل غیر کاتالیستی متان (CH4) به وسیله تخلیه های الکتریکی از قبیل فرکانسهای بالای پالسی، هاله، رادیو فرکانسی، مایکروویو و DBD به مرحله اجرا در آمده است. عمدتاً این نوع رآکتورهای پلاسما برای تولید محصولات هیدروکربن های C2، متانول یا سنتز فیلم کربنی شبه الماس به کار می رود (102 – 107) مثلاً راکتورهای پلاسمایی رادیو فرکانسی در فشار پایین معمولاً در صنعت برای تولید نیمه هادیها و بهبود کیفیت سطح به کار برده می شوند.


دانلود با لینک مستقیم


سمینار کارشناسی ارشد شیمی بررسی تولید گاز سنتز در راکتورهای پلاسمای مایکروویو

مقاله سنتز لیگاند

اختصاصی از اس فایل مقاله سنتز لیگاند دانلود با لینک مستقیم و پر سرعت .

مقاله سنتز لیگاند


مقاله سنتز لیگاند

دانلود مقاله سنتز لیگاند 

تعداد صفحه: 15

فرمت: وورد

قابل ویرایش 


دانلود با لینک مستقیم


مقاله سنتز لیگاند

سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای FeCl2.4H2O، PbCl2 و MgSO4.7H2O در شرایط حلال و دمای اتاق

اختصاصی از اس فایل سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای FeCl2.4H2O، PbCl2 و MgSO4.7H2O در شرایط حلال و دمای اتاق دانلود با لینک مستقیم و پر سرعت .

سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای FeCl2.4H2O، PbCl2 و MgSO4.7H2O در شرایط حلال و دمای اتاق


سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای FeCl2.4H2O، PbCl2 و MgSO4.7H2O در شرایط حلال و دمای اتاق چکیده
مشتقات کینوکسالین طبقه مهمی از ترکیبات حاوی نیتروژن هستند و به طور وسیع در رنگ ها، داروها و مواد فوتوشیمیایی/ الکتریکی به کار می روند. حلقه کینوکسالین بخشی از ساختار آنتی بیوتیک هایی نظیر اکینومایسین، لوومایسین و اکتینولیوتین را تشکیل می دهد.
تا کنون روش هایی برای سنتز این ترکیبات هتروسیکل توسعه یافته است. بیشتر روش های معمول برای سنتز این ترکیبات بر پایه تراکم آریل 2،1- دی آمین با یک ترکیب 2،1- دی کربونیل در شرایط اسیدی است.
تعداد صفحات: 100ص
فهرست مطالب

فصل اول: مروری بر تحقیقات انجام شده
مروری بر شیمی هتروسیکل
1-1-2- هتروسیکل های آروماتیک دوحلقه ای
1-1-3- سیستم های حلقوی متصل به بنزن آروماتیک هستند
1-1-4- برخی از کاربردهای ترکیبات هتروسیکل
1-1-5- برخی از هتروسیکلهای مضر برای سلامتی انسان
1-1-6- ترکیبات هتروسیکل حاوی اتم نیتروژن
1-1-7- مروری کوتاه بر خواص شیمیایی وفیزیکی برخی از دیازین ها
1-2- کینوکسالین و کاربردهای آن
1-2-1- فنازین مشتقی از کینوکسالین
1-2-2- حلقه پیرازین بخش هتروسیکلی کینوکسالین
13 1-3- روش های سنتزی کینوکسالینها
14 1-4- واکنش¬های کینوکسالین و مشتقات آن
1-4-1- واکنش استخلافی الکتروفیلی روی حلقه کینوکسالین
1-4-2- واکنش کلردار شدن کینوکسالین N- ¬اکساید
1-4-3- حضور کینوکسالین در واکنشهای حلقه زایی 3،1 دوقطبی
1-4-4- واکنش حلقه زایی کینوکسالین با سایلیل انول اتر
1-4-5- کینوکسالین ها به عنوان پیش ماده برای سنتز اکسیرن ها
1-4-6- تبدیل کینوکسالین N- ¬اکسید به 3،2- دی فنیل کینوکسالین
1-4-7- نوآرایی در حلقه کینوکسالین
1-5- لوییس اسیدها
1-5-1- کاربرد تعدادی از لوئیس اسیدها در فرایند های شیمی آلی
1-5-1-1- نمک های آهن دوظرفیتی (Fe2+)
1-5-1-2- نمک های سرب دوظرفیتی (Pb2+)
1-5-1-3- نمک های منیزیم (Mg+2)
فصل دوم: کارهای عملی و آزمایشگاهی
2-1- اطلاعات عمومی
2-2- دستگاههای مورد نیاز
2-3- حلالهای مورد نیاز
2-4- روش عمومی تهیه کینوکسالین هادر فاز محلول توسط لوئیس اسید
2-4-1- روش تهیه اسنفتو -b]1،2[ کینوکسالین با استفاده از کاتالیزور آهن دی کلرید چهار آبه (FeCl2.4H2O) در فاز محلول
2-4-2- روش تهیه 6 متیل- 2،3- دی فنیل کینوکسالین با استفاده از کاتالیزور سرب دی کلرید (PbCl2) در فاز محلول
2-4-3- روش تهیه دی بنزو [a,c] فنازین با استفاده از کاتالیزور سولفات منیزیم هفت آبه (MgSO4.7H2O) در فاز محلول
فصل سوم: بحث و نتیجه گیری
3-1- مقدمه
٣ـ2ـ سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای آهن دی کلرید چهار آبه، سرب دی کلرید و منیزیم سولفات هفت آبه
3-2-1- بهینه سازی مقدار کاتالیزورها
3-2-2- بهینه سازی حلال
3-2-3- جداول مربوط به نتایج بدست آمده از سنتز مشتقات کینوکسالین
3-3- بررسی اطلاعات طیفی تعدادی از مشتقات کینوکسالین سنتز شده
3-3-1- سنتز اسنفتو-b]1،2[ کینوکسالین با استفاده از کاتالیزور FeCl2.4H2O
در حلال اتانول و دمای اتاق
2،3- دی فنیل کینوکسالین توسط کاتالیزور PbCl2 در حلال اتانول و دمای اتاق
3-3-3- تهیه دی بنزو [a,c] فنازین توسط کاتالیزور MgSO4.7H2O در حلال اتانول و دمای اتاق
3-4- مکانیسم پیشنهادی برای سنتز کینوکسالین ها از ترکیبات کربونیلی توسط کاتالیزور لوئیس اسید
3-5- نتایج
طیفهای IR،13CNMR ،1HNMR
مراجع

دانلود با لینک مستقیم


سنتز مشتقات کینوکسالین با استفاده از لوئیس اسیدهای FeCl2.4H2O، PbCl2 و MgSO4.7H2O در شرایط حلال و دمای اتاق