اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله جریان در کمپرسورهای سانتریفوژ

اختصاصی از اس فایل دانلود مقاله جریان در کمپرسورهای سانتریفوژ دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله جریان در کمپرسورهای سانتریفوژ


دانلود مقاله جریان در کمپرسورهای سانتریفوژ

کمپرسورهای سانتریفوژ ممکن است در توربوفن ها بعنوان کمپرسورهای فشار بالا در پائین دست طبقات چندتای کمپرسور های محوری کاربرد داشته باشد. در بعضی کاربردهای مربوط به توربین گاز و موتور جهت یک کمپرسور سانتریفوژ یک یا دو طبقه ای بعنوان کل سیستم تراکم به خدمت گرفته می شود.

 کمپرسورهای سانتریفوژ بطور محسوسی با انواع محوری خود تفاوت دارند. افزایش فشار بازای هر طبقه بطور قابل توجهی بالاتر از کمپرسورهای محوری باشد، مسیر جریان دارای یک افزایش قابل توجه در شعاع، از ووردی به خروجی بوده و جریان بصورت محوری وارد روتور یا Impeller شده و آن را بصورت شعاعی ترک می کند. در بسیاری از کاربردهای جریان سپس از میان یک دیفیوزر پره دار عبور می کند. با افزایش شعاع مسیر جریان فاصله محیطی بین تیغه ها نیز افزایش می یابد. برای جبران این و ثابت نگهداشتن مساحت مسیر جریان span تیغه روتور بطور قابل توجهی از ورودی به خروجی کاهش می یابد. علاوه بر این برای اینکه بارگذاری تیغه در سطح مطلوب باقی بماند، بدون اینکه جدایی رخ دهد، تیغه های جداکننده در قسمت انتهایی مسیر جریان روتور قرار داده شده است. همچنین تسمه های نگهدارنده نیز روی روتور وجود دارد این مشخصات هندسی می تواند موانعی را درمسیر جریان و با کاهش span به سمت لبه فرار ایجاد می کند.

 دیفیوزرهای شعاعی نیز باید با یک افزایش شعاع افزایش فاصله محیطی بین تیغه ها مقابله کننده برای جبران این مسئله دیفیوزر ها نوعاً دارای افزایش ضخامت تیغه به سمت لبه فرار می باشند. Span یک دیفیوزر شعاعی معمولاًٌ از لبه حمله به لبه فرار و با افزایش شعاع به نسبت ثابت می ماند. کمپرسورهای سانتریفوژ پربازده نیازمند پخش جریان بخصوصی می باشند که می تواند باعث رشد سریع لایه مرزی در نیمه دوم گذرگاه جریان نسبتاً طولانی در محور شود. این رفتار اغلب جدایی جریان را که باعث تشکیل ناحیه دنباله شده و به صورت جت درمی آید را از سطح مکش تیغه به سطح فشار تیغه وارد می کند این جدایی جریان پتانسیل پخش کنندگی را برای چرخ کاهش می دهد و باعث ایجاد ساختارهای پیچیده جت/ دنباله jet wake در خروجی روتور می شود. این شرایط خروجی روتور سپس باعث تلفات ناشی از اختلاط و جریان ناپایدار ورودی به دیفیوزر می شود که این خود منجر به کاهش بیشتر بازده آن طبقه خواهد شد.

 یک مطالعه گسترده در مورد رفتار جریان در روتور کمپرسورهای سانتریفوژ توسط [19,10]Eckardt به انجام رسید او به اندازه گیری های دقیقی از سرعتهای جریان و جهتها در مکانهای مختلف در میدان جریان از ورودی هدایت کننده(Inducer ) تا خروجی روتور دست یافت. در مطالعه اول[19] که با یک چرخ( روتور) شعاعی انجام شده مشاهده شد که جریان در هدایت کننده شعاعی و قسمت بالادست روتور نسبتاً بدون اغتشاش است اولین اغتشاش و پییچدگی های جریان در حدود 60% ا ز وتر با ورود جدایی جریان در گوشه بین بدنه و سطح مکش گذرگاه طاهر شدند. پس از برخورد قسمت جدایی یک رشد سریع در ناحیه دنباله در گوشه بین بدنه و سطح مکش رخ داد که مشخص شد که مربوط به افزایش چگالی جریان ثانویه است. گردابه های نزدیک پوسته و گوشع بین توپی و سطح مکش لایه مرزی های دیواره های کانالها را باصطلاح" پوست کندند" و سیال کم انرژی را وارد دنباله نمودند. سیلا کم انرژی دیگری از فاصله نوک پره بداخل ناحیه دنباله وارد شده و باعث شد که دنباله بطور قابل توجهی در نیمه پائین دست روتور افزایش یابد. الگوی مغشوش جریان سیال پرانرژی و کم انرژی(jet/wake ) تا خروجی چرخ امتداد می یابد. زیرا اختلاط مغشوش لایه های برشی جت دنلاه توسط چرخش سیستم و اثرات انحنا، فرو نشانده می شود. در نتیجه در تخلیه چرخ، تلفات اساساً در دنباله و در طول دیواره های گذرگاهها متمرکز شده است. [20] Eckardt سپس رفتار جریان را در روتور سانتریفوز مقایسه کرد، یکی با تخلیه شعاعی و دیگری بصورت backswept هر دو از پوسته و دیفیوزرهای بدون پره مشابهی بهره می برند. تنها تیغه بندی و شکل hub اصلاح شده بود. او دریافت که الگوی جریان در ناحیه هدایت کننده هر دو دستگاه بطور مشابه گسترش یافت و در هر دو یک جدای جریان سه بعدی در shroud در ناحیه دارای حداکثر انحنای خط جریان نوک پره آغاز گردید . اگرچه تفاوت قابل توجهی در نیمه دوم گذرگاه جریان مشاهده شد. در روتور با تخلیه شعاعی یک الگوی jet/wake  با شدت افزاینده ای تا خروجی ادامه یافت ولی برای روتور backward- swept اغتشاش بسیار کمتری اتفاق افتاد که حاصل اختلاط بهبود یافته jet/wake می باشد.

  جریان یکنواخت تر تخلیه همراه با روتور backswept کارآیی دیفیوزر پره دار را بهبود خواهد بخشید و بنابراین کارآیی هر طبقه بهبود خواهد یافت.

 مطالعات صورت گرفته توسط Eckardt یک روتور unsplittered را بکار گرفت. اگرچه یک روتور با تیغه های splitter توسطkrain[21] مورد بررسی قرار گرفت. پروفیل سرعت او الگوهای جریان متفاوت در کانالهای مجاور و پایین دست لبه حمله تیغه های جداکننده (splitter-blode ) مشاهده گردید. پروفیلهای سرعت افزایش بار در کانال سمت تحت فشار تیغه اصلی و یک گرادیان سرعت مسطح شده در کانال سمت تحت مکش را نشان دادند. با حرکت جریان به سمت پایین دست از طریق مسیر جریان جداگانه، دنباله گسترش بیشتری را در سمت مکش تیغه اصلی نشان داد.

 مطالعات Eckard با استفاده از دیفیوزر بدون پره با مساحت ثابت انجام شد، که جریان Impeller توسط اغتشاش هیچ دیفیوزری تحت تأثیر قرار نمی گیرد. اگر چه برای دستیابی به بازده بالاتر و نسبت فشارهای بالاتر در طبقات کمپرسور سانتریفوژ، دیفیوزرهای پره دار موردنیاز است. بازده طبقات کمپرسور سانتریفوژ بطور قابل توجهی می تواند تحت تأثیر اثر متقابل بین دیفیوزر و Impeller قرار بگیرد. بازیابی دیفیوزر تحت تأثیر جریان بسیار مغشوش و ناپایدار خروجی از Impeller قرار می گیرد. همچنین وقتی که Impeller و دیفیوزر بصورت نزدیک به هم بسته شده اند، اثرات ناشی از تیغه های دیفیوزر می تواند جریان داخلی Impeller را از طریق مغشوش کردن میدان فشار استاتیک در خروجی Impeller و ورودی دیفیوزر تحت تأثیر قرار دهد. این اثر، همچنین اگر اعداد ماخ فراصوتی در لبه حمله دیفیوزر رخ دهد و شوکها تا ناحیه تخلیه Impeller ادامه یابد، بیشتر مشخص خواهد بود. Krain[21]، جریان را در یک طبقه کمپرسور سانتریفوژ با دیفیوزرهای پره دار و بدون پره مورد مطالعه قرار داد. در این طبقه، یک تخلیه شعاعی از Impeller با تیغه های جدا کننده مورد استفاده قرار گرفت، و دیفیوزر پره دار یک قطعه تخت با کانال مستقیم بود. او تنها اثرات ضعیفی از دیفیوزر پره دار بر روی میدان جریان تخلیه Impeller، متناسب با رفتار جریان با دیفیوزر بدون پره، به علت فاصله زیاد جدایی بین Impeller و دیفیوزر مشاهده نمود.

اگر چه در ناحیه ورودی دیفیوزر پره دار، جریان بسیار مغشوش، با نوسانات دوره ای بزرگ در زاویه جریان محلی بوده و حاصل ناپایداری ها در جریان تخلیه Impeller می باشد.

این آزمایش خلاصه از خصوصیات جریان در کمپرسورهای سانتریفوژ، باید باعث ترسیم پیچیدگی چنین جریانهایی و نشان دادن لزوم درک رفتار جریان، در راستای رسیدن به کارآیی بهینه در اجزاء و طبقات در طراحی گردد.

جریان در سیستم های انبساطی:  

سیستم های انبساطی نوعاً شامل یک یا تعداد بیشتری طبقات توربینهای محوری یا شعاعی می باشند. در کاربردهای هوا فضا، توربینهای محوری تقریباً بطور انحصاری مورد استفاده قرار می گیرند. توربینهای شعاعی بیشتر در دستگاههای کوچک مانند واحدهای تولید نیروی کمکی برای هواپیما، توربوشارژرها و توربین های گازی صنعتی کوچک کاربرد پیدا می کنند.

جریان در توربینها دارای خصوصیاتی چون گرادیان فشارهای بزرگ و متنوع و نرخ انتقال حرارت بالا می باشد که ناشی از گازهای داغی است که از محفظه احتراق خارج می شوند. به دلیل محیط با دمای بالا که توربین ها در معرض آن هستند، جریانهای خنک کاری لایه ای برای حفاظت اجزای توربین و دیواره ها از صدمات حرارتی به کار گرفته می شود. این جریان های خنک کننده به درون مسیر جریان اولیه و از طریق سوراخهایی در تیغه های توربین و دیواره ها، تزریق می شوند.

اثر متقابل جت های خنک کننده با جریان اصلی منجر به ساختارهای پیچیده جریان هوا با گرادیانهای دمایی بالا در مسیر اصلی گاز می شود.

همانند سیستمهای تراکمی، میدان جریان در توربین نیز تحت تأثیر لایه های مرزی تیغه و دیواره، اثر متقابل تیغه، دیواره، چرخش، سرعت نسبی Shroud، جریان نشتی نوک پره، شوکها، اثر متقابل شوک- لایه مرزی، جریان ناپایدار، و اثر متقابل ردیف پره ها قرار دارد که باعث ایجاد یک جریان بسیار پیچیده و سه بعدی می شود.

در قسمت بعدی، بسیاری از این حالتهای میدان جریان توربین با جزئیات بیشتر برای هر دو نوع توربین شعاعی و محوری مورد بررسی قرار خواهد گرفت.

جریان در توربین های محوری:

توربین های محوری از یک یا چند طبقه از استاتور و روتور برای انبساط جریانی که از محفظه احتراق خارج می شود، استفاده می کنند. آنها در سرعتهای دورانی بالایی کار می کنند و می توانند جریانهای فراصوتی را تجربه کنند. مسیر جریان مربوط به این توربین ها تغییرات شعاعی کمی در امتداد ردیف پره ها دارند و جریان ورودی و خروجی اساساً در راستای محوری است. تیغه های توربین های محوری معمولاً دارای ضریب شکل پایین و پیچش بالا هستند. آنها نوعاً ضخیم بوده و لبه حمله آنها گرد است تا مطابق با مسیرهای خنک کاری داخلی آن باشد. از آنجا که توربین در محیطی از گازهای داغ خروجی از محفظه احتراق کار می کند، انتقال حرارت یک مسئله مهم است. طبقات اولیه توربین جریانهای با دمای بالائی را تحمل می کنند و در نتیجه آنها نوعاً از نوع خاصی جریان خنک کاری بهره می برند.

این جریان می تواند از گذرگاههای خنک کاری داخلی و از طریق سوراخهایی در تیغه، تزریق شود تا یک لایه محافظ از هوای خنک تر در طول سطح ایرفویل را فراهم آورد. هوای خنک کننده همچنین می تواند در طول دیواره ها تزریق شود. در نتیجه، جریان اصلی تحت تأثیر این جریان خنک کننده قرار خواهد گرفت. علاوه بر این، رفتار گازهای داغ محفظه احتراق، با عبور آن از ردیف پره های متوالی تغییر خواهد کرد.

شامل 95 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله جریان در کمپرسورهای سانتریفوژ

جریان در کمپرسورهای سانتریفوژ

اختصاصی از اس فایل جریان در کمپرسورهای سانتریفوژ دانلود با لینک مستقیم و پر سرعت .

جریان در کمپرسورهای سانتریفوژ


جریان در کمپرسورهای سانتریفوژ

دسته بندی : فنی مهندسی _ مکا نیک

فرمت فایل:  Image result for word doc 
حجم فایل:  (در قسمت پایین صفحه درج شده)
تعداد صفحات فایل:  96

 فروشگاه کتاب : مرجع فایل

 

 

 

 قسمتی از محتوای متن Word 

 

جریان در کمپرسورهای سانتریفوژ

 

 

کمپرسورهای سانتریفوژ ممکن است در توربوفن ها بعنوان کمپرسورهای فشار بالا در پائین دست طبقات چندتای کمپرسور های محوری کاربرد داشته باشد. در بعضی کاربردهای مربوط به توربین گاز و موتور جهت یک کمپرسور سانتریفوژ یک یا دو طبقه ای بعنوان کل سیستم تراکم به خدمت گرفته می شود.

 

کمپرسورهای سانتریفوژ بطور محسوسی با انواع محوری خود تفاوت دارند. افزایش فشار بازای هر طبقه بطور قابل توجهی بالاتر از کمپرسورهای محوری باشد، مسیر جریان دارای یک افزایش قابل توجه در شعاع، از ووردی به خروجی بوده و جریان بصورت محوری وارد روتور یا Impeller شده و آن را بصورت شعاعی ترک می کند. در بسیاری از کاربردهای جریان سپس از میان یک دیفیوزر پره دار عبور می کند. با افزایش شعاع مسیر جریان فاصله محیطی بین تیغه ها نیز افزایش می یابد. برای جبران این و ثابت نگهداشتن مساحت مسیر جریان span تیغه روتور بطور قابل توجهی از ورودی به خروجی کاهش می یابد. علاوه بر این برای اینکه بارگذاری تیغه در سطح مطلوب باقی بماند، بدون اینکه جدایی رخ دهد، تیغه های جداکننده در قسمت انتهایی مسیر جریان روتور قرار داده شده است. همچنین تسمه های نگهدارنده نیز روی روتور وجود دارد این مشخصات هندسی می تواند موانعی را درمسیر جریان و با کاهش span به سمت لبه فرار ایجاد می کند.

 

دیفیوزرهای شعاعی نیز باید با یک افزایش شعاع افزایش فاصله محیطی بین تیغه ها مقابله کننده برای جبران این مسئله دیفیوزر ها نوعاً دارای افزایش ضخامت تیغه به سمت لبه فرار می باشند. Span یک دیفیوزر شعاعی معمولاًٌ از لبه حمله به لبه فرار و با افزایش شعاع به نسبت ثابت می ماند. کمپرسورهای سانتریفوژ پربازده نیازمند پخش جریان بخصوصی می باشند که می تواند باعث رشد سریع لایه مرزی در نیمه دوم گذرگاه جریان نسبتاً طولانی در محور شود. این رفتار اغلب جدایی جریان را که باعث تشکیل ناحیه دنباله شده و به صورت جت درمی آید را از سطح مکش تیغه به سطح فشار تیغه وارد می کند این جدایی جریان پتانسیل پخش کنندگی را برای چرخ کاهش می دهد و باعث ایجاد ساختارهای پیچیده جت/ دنباله jet wake در خروجی روتور می شود. این شرایط خروجی روتور سپس باعث تلفات ناشی از اختلاط و جریان ناپایدار ورودی به دیفیوزر می شود که این خود منجر به کاهش بیشتر بازده آن طبقه خواهد شد.

 

یک مطالعه گسترده در مورد رفتار جریان در روتور کمپرسورهای سانتریفوژ توسط [19,10]Eckardt به انجام رسید او به اندازه گیری های دقیقی از سرعتهای جریان و جهتها در مکانهای مختلف در میدان جریان از ورودی هدایت کننده(Inducer ) تا خروجی روتور دست یافت. در مطالعه اول[19] که با یک چرخ( روتور) شعاعی انجام شده مشاهده شد که جریان در هدایت کننده شعاعی و قسمت بالادست روتور نسبتاً بدون اغتشاش است اولین اغتشاش و پییچدگی های جریان در حدود 60% ا ز وتر با ورود جدایی جریان در گوشه بین بدنه و سطح مکش گذرگاه طاهر شدند. پس از برخورد قسمت جدایی یک رشد سریع در ناحیه دنباله در گوشه بین بدنه و سطح مکش رخ داد که مشخص شد که مربوط به افزایش چگالی جریان ثانویه است. گردابه های نزدیک پوسته و گوشع بین توپی و سطح مکش لایه مرزی های دیواره های کانالها را باصطلاح" پوست کندند" و سیال کم انرژی را وارد دنباله نمودند. سیلا کم انرژی دیگری از فاصله نوک پره بداخل ناحیه دنباله وارد شده و باعث شد که دنباله بطور قابل توجهی در نیمه پائین دست روتور افزایش یابد. الگوی مغشوش جریان سیال پرانرژی و کم انرژی(jet/wake ) تا خروجی چرخ امتداد می یابد. زیرا اختلاط مغشوش لایه های برشی جت دنلاه توسط چرخش سیستم و اثرات انحنا، فرو نشانده می شود. در نتیجه در تخلیه چرخ، تلفات اساساً در دنباله و در طول دیواره های گذرگاهها متمرکز شده است. [20] Eckardt سپس رفتار جریان را در روتور سانتریفوز مقایسه کرد، یکی با تخلیه شعاعی و دیگری بصورت backswept هر دو از پوسته و دیفیوزرهای بدون پره مشابهی بهره می برند. تنها تیغه بندی و شکل hub اصلاح شده بود. او دریافت که الگوی جریان در ناحیه هدایت کننده هر دو دستگاه بطور مشابه گسترش یافت و در هر دو یک جدای جریان سه بعدی در shroud در ناحیه دارای حداکثر انحنای خط جریان نوک پره آغاز گردید . اگرچه تفاوت قابل توجهی در نیمه دوم گذرگاه جریان مشاهده شد. در روتور با تخلیه شعاعی یک الگوی jet/wake با شدت افزاینده ای تا خروجی ادامه یافت ولی برای روتور backward- swept اغتشاش بسیار کمتری اتفاق افتاد که حاصل اختلاط بهبود یافته jet/wake می باشد.

 

جریان یکنواخت تر تخلیه همراه با روتور backswept کارآیی دیفیوزر پره دار را بهبود خواهد بخشید و بنابراین کارآیی هر طبقه بهبود خواهد یافت.

 

مطالعات صورت گرفته توسط Eckardt یک روتور unsplittered را بکار گرفت. اگرچه یک روتور با تیغه های splitter توسطkrain[21] مورد بررسی قرار گرفت. پروفیل سرعت او الگوهای جریان متفاوت در کانالهای مجاور و پایین دست لبه حمله تیغه های جداکننده (splitter-blode ) مشاهده گردید. پروفیلهای سرعت افزایش بار در کانال سمت تحت فشار تیغه اصلی و یک گرادیان سرعت مسطح شده در کانال سمت تحت مکش را نشان دادند. با حرکت جریان به سمت پایین دست از طریق مسیر جریان جداگانه، دنباله گسترش بیشتری را در سمت مکش تیغه اصلی نشان داد.

مطالعات Eckard با استفاده از دیفیوزر بدون پره با مساحت ثابت انجام شد، که جریان Impeller توسط اغتشاش هیچ دیفیوزری تحت تأثیر قرار نمی گیرد. اگر چه برای دستیابی به بازده بالاتر و نسبت فشارهای بالاتر در طبقات کمپرسور سانتریفوژ، دیفیوزرهای پره دار موردنیاز است. بازده طبقات کمپرسور سانتریفوژ بطور قابل توجهی می تواند تحت تأثیر اثر متقابل بین دیفیوزر و Impeller قرار بگیرد. بازیابی دیفیوزر تحت تأثیر جریان بسیار مغشوش و ناپایدار خروجی از Impeller قرار می گیرد. همچنین وقتی که Impeller و دیفیوزر بصورت نزدیک به هم بسته شده اند، اثرات ناشی از تیغه های دیفیوزر می تواند جریان داخلی Impeller را از طریق مغشوش کردن میدان فشار استاتیک در خروجی Impeller و ورودی دیفیوزر تحت تأثیر قرار دهد. این اثر، همچنین اگر اعداد ماخ فراصوتی در لبه حمله دیفیوزر رخ دهد و شوکها تا ناحیه تخلیه Impeller ادامه یابد، بیشتر مشخص خواهد بود. Krain[21]، جریان را در یک طبقه کمپرسور سانتریفوژ با دیفیوزرهای پره دار و بدون پره مورد مطالعه قرار داد

 

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن در این صفحه درج شده به صورت نمونه

ولی در فایل دانلودی بعد پرداخت، آنی فایل را دانلود نمایید.


دانلود با لینک مستقیم


جریان در کمپرسورهای سانتریفوژ

علل تخریب کمپرسورهای گریز از مرکز شرکت بهره برداری نفت و گاز گچساران

اختصاصی از اس فایل علل تخریب کمپرسورهای گریز از مرکز شرکت بهره برداری نفت و گاز گچساران دانلود با لینک مستقیم و پر سرعت .

علل تخریب کمپرسورهای گریز از مرکز شرکت بهره برداری نفت و گاز گچساران


علل تخریب کمپرسورهای گریز از مرکز شرکت بهره برداری نفت و گاز گچساران

Word2007777

 

 

پروژه علل تخریب کمپرسورهای گریز از مرکز 74 ص

 

مقدمه :
کمپرسور به ماشینی اطلاق می شود که از آن برای افزایش فشار سیالات تراکم پذیر (گازها و بخارات) استفاده می شود. کمپرسور در رفاه زندگی بشری و گسترش صنایع از آنچنان اهمیتی برخوردار بوده که امروزه اصطلاحاً آن را اسب بارکش (work horse) صنایع می نامند. با گسترش صنایع که از نیمه دوم قرن نوزدهم شروع گردید و با رشدی شتابان قرن بیستم را پشت سر گذاشت،باید انتظار داشت که این  ماشین پر ارزش نقش مهمتری را در قرنی که به تازگی شروع شده در رفاه بشر و توسعه صنایع بعهده داشته باشد. در اهمیت کمپرسورها همین بس که دامنه بکارگیری از آن در شاخه های مختلف صنایع، پزشکی، لوازم خانگی و غیره به سرعت در حال توسعه می باشد. به طوری که امروزه حضور آن در جای جای جوامع بشری به شدت بچشم می خورد که عمده ترین آنها عبارتند از وسایل خانگی (یخچال،فریزر،کولر گازی ) تجهیزات پزشکی (دریل های دندانپزشکی،هوای مواد استفاده در بیمارستان )صنایع هواپیمایی (تامین هوای فشرده برای موتور توربین )و صنایع (تامین هوای فشرده برای سیستمهای پنوماتیکی،میعان گازی،ذخیره سازی گاز...)
یک برآورد نسبی در زمینه نقش کمپرسور در صنایع بزرگ نشان می دهد که حدود 10 درصد انرژی مصرفی در صنایع صرف تراکم گازها ( بالاخص هوای فشرده )می گردد. شرایط بهره برداری از کمپرسور ها در صنایع از چنان دامنه وسیعی برخوردار است که امروزه انواع متنوعی از کمپرسورها در ظرفیتهای مختلف و از فشار مکش بسیار کم اخلاء )تا فشار بسیار زیاد (بیش از 6000 بار )بکار گرفته می شوند.

کمپرسورهای گریز از مرکز
کمپرسورهای گریز از مرکز بعد از کمپرسورهای تناوبی پر مصرف ترین کمپرسورها در صنایع
می باشند به ویژه عنوان کمپرسور مورد استفاده در فرآیند ها دررده اول قرار دارند. حال اگر به جای تعداد،ظرفیت و یا توان مصرفی معیار انتخاب قرار گیرد،کمپرسورهای گریز از مرکز بالاترین سهم را در فرآیند تراکم گازها در صنایع به خود اختصاص می دهند.
در طول 40 سال اخیر به لحاظ ابعاد نسبی کوچکتر و وزن کمتر ( در مقایسه با کمپرسورهای تناوبی ) با رشد و توسعه صنایع،بکار گیری از کمپرسورهای فوق در فرآیند ها بیشترین توجه را به خود معطوف داشته است. پائین بوده باروارده بر روی فونداسیون در این کمپرسور ها موجب گردیده تا در نصب آنها به فونداسیون کوچمتر و سبکتری نیاز باشد. در قدمهای اولیه ساخت این کمپرسور ها،راندمان آنها بسیار پائین بوده و قدرت رقابت با کمپرسورهای تناوبی را نداشتند. ولی در مناطقی که قیمت انرژی پائین باشد (نظیر کشورمان ) می تواند برای خود سهم بزرگی را در بازار فروش کمپرسورها اختصاص دهد.
در طرحهای اولیه، از این کمپرسورها برای مواقعی که فشار مورد نیاز کم و دبی زیاد مورد نظر بود،استفاده می شد.
در سالهای اولیه دهده 1930 در صنایع فولاد از این کمپرسور ها برای کوره های از نوع            (Blast furnace) استفاده می شد. در همین دوران استفاده از این کمپرسورها برای کشیدن گازهای حاصل از تبدیل زغال سنگ به کک در کوره های کک مرسوم گردید.
در سالهای پایانی دهه 1930 صنایع تبرید برای تهویه مطبوع ساختمانها،استفاده از این کمپرسور ها را به لحاظ کوچکی ابعاد و پائین بودن میزان لرزش و فونداسیون مورد نیاز در دستور کارمهندسین تاسیسات قرار گرفت.بالا رفتن ظرفیت واحدهای صنعتی و ارزان بودن قیمت انرژی دلیل خوبی بود تا بهره گیری از این کمپرسورها در صنایع در سالهای دهه 1950 رشد بیشتری داشته باشد.
افزایش قیمت انرژی در سالهای 1970 هر چند تا حدودی موجب محدودیت انتخاب این
کمپرسور ها گردید ولی زمینه مناسبی بود تا برروی افزایش راندمان این کمپرسور ها اصلاحات بنیادی صورت می پذیرد. از سوی دیگر نیاز به افزایش قابلیت اعتماد (Reliability) در بهره گیری از کمپرسور خود کمک بزرگی برای توسعه بازار فروش کمپرسورهای گریز از مرکز شد. چرا که در بسیاری از موارد این کمپرسور قادر بودند بدون نیاز به هر گونه تعمیر اساسی به مدت سه سال در واحدهای در حال کار باشند و این زمان در بعضی از موارد حتی به 6 سال نیز می رسید. عامل فوق به لحاظ کاهش عوارض زیانبار توقف خط تولید جهت تعمیرات وبه ویژه در واحدهای بزرگ دلیل خوبی بود تا این نوع کمپرسور ها نگاه  های متخصصان صنایع را متوجه خود سازند و همین جا بود که قابلیت اعتماد عنصر اولیه انتخاب کمپرسورها شد تا قیمت انرژی. کمپرسورهای گریز از مرکز برای دبی(    1000000-1700) ساخته می شوند. بدیهی است که به همین خاطر استفاده از این کمپرسور ها در دبی های کم که چندان اقتصادی نمی باشند نتوانست موفقیت چندانی را کسب نماید. نسبت تراکم قابل دسترسی در کمپرسورهای یک طبقه گریز از مرکز به حدود 3 نیز می رسد ولی در کمپوسورهای گریز از مرکز چند طبقه که برای هواو یا ازت به کار گرفته می شوند. مقدار آن کمتر از 2 می باشد.

دسته بندی Classification
قبل از ورود به هر بحثی در این زمینه نخست لازم است که واژه مرحله (Stage) در کمپرسورها مجدداً تعریف گردد. در زمینه کمپرسورهای تناوبی این واژه تعریفی استاندارد داشته و عبارت  است از تعداد دفعاتی که گاز در فضای بین پیستون و سیلندر تحت فرآیند تراکم قرار می گیرد و در بین مراحل خنک می شود. اما در مورد کمپرسورهای گریز از مرکز این واژه از نظر سازندگان کمپرسور و مهندسین فرآیند ارای تعابیر متفاوتی می باشد.
از نظر سازنده کمپرسور،مجموعه یک پروانه و یک پیچک (Diffuser) را یک مرحله می گویند. حال آنکه از نظر مهندسین فرآیند این واژه در یک محدوده از فرآیند تراکم معنی پیدا می کند که گاز تحت عمل خنک کردن مجدد قرار گیرد. مثلاً اگر کمپرسور دارای 6 پروانه و یک خنک کن بین مرحله ای باشد،سازندگان کمپرسور آنرا 6 مرحله ای و مصرف کنندگان آنرا 2 مرحله ای
می نامند. این اختلاف نظر در کمپرسورهایی که دارای یک پروانه می باشند مسئله مهمی نبوده چرا که هر دو یک مفهوم را می رسانند. اما وقتی که تعداد پروانه های یک پوسته افزایش می یابد اختلاف نظرها خود را نشان می دهند.
یکی از حالتهای دسته بندی کمپرسورهای گریز از مرکز شکل پوسته آن می باشد. با توجه به اینکه پوسته ها دو تکه می باشند بر حسب اتصال تکه ها به یکدیگر کمپرسورها را افقی (Horizental) و یا عمودی (Vertical) می نامند. کمپرسور یک طبقه ای که پروانه آن به صورت آویزان (Overhung) می باشد نمونه ای از کمپرسور یک مرحله ای پوسته عمودی (Vertical split) می‌باشد که در شکل نشان داده شده است. کمپرسورهای گریز از مرکز چند مرحله ای غالباً به شکل افقی ساخته می شوند.
حسن بزرگ کمپرسورهای افقی سهولت در تعمیر و نگهداری آن می باشد. با باز کردن قسمت فوقانی پوسته کلیه قسمت های درونی کمپرسور در دسترس بوده و روتور آن را می توان بدون جدا کردن از کمپرسور بیرون کشید. در کمپرسورهایی که در فشار بالا و یا برای تراکم گازهای با جرم مولکولی کم کار می کنند،آب بند کردن پوسته مشکل بوده و در این گونه موارد ترجیح داده می شود که کمپرسور به شکل بشکه ای (Barrel type) ساخته شود در مدلهای چند مرحله ای کمپرسورهای بشکه ای یک بشکه داخلی به صورت افقی درون پوسته اصلی کار گذاشته شده است،بطوریکه می‌توان روتوررا بدون جدا کردن پروانه ها بیرون کشید. در کمپرسورهای با پروانه آویزان جدا کردن روتور بدون جداسازی پروانه ها امکان پذیر نمی باشد. طرح دیگر کمپرسورهای گریز از مرکز مدل گیربکسی آن است. این نوع کمپرسورها غالباً از نوع پروانه آویزان بوده که دارای یک دنده بزرگ (bull gear) بوده و انتقال نیرو به پروانه ها توسط دنده های کوچکتر (pinion) صورت
می گیرد.(شکل2).

در این نوع طراحی پوسته (Casing) به گیربکسی متصل می باشد. این طرح می تواند در شکلهای یک یا چند مرحله ای ساخته شوند. کمپرسورهای چند مرحله ای از نوع طرح فوق غالباً برای تراکم هوا ساخته شده و خنک کن بین مرحله ای آن بخشی از مجموعه کمپرسور می باشد.

آرایش  Arrangement
همانطوری که قبلاً گفته شد کمپرسور یک مرحله ای عموماً به شکل پروانه آویزانه می باشند که نمونه‌ای از آن در شکل (1) نشان داده شده است. در این کمپرسور ها گاز در راستای محور کمپرسور وارد پوسته شده و در جهت عمود بر محور (و یا به عبارت دیگر در راستای شعاع پروانه ) ازکمپرسور خارج می شود.

مقدمه 1

کمپرسورهای گریز از مرکز ....................................................................................................... 2

دسته بندی(Classification).............................................................................................. 3

آر ایش(Arrangement)........................................................................................................ 6

پروانه ها(Impellers) .............................................................................................................. 9

مشخصات ابعادی کمپرسورها(Compressor Sizing)............................................... 10

مثال حل شده................................................................................................................................ 17

مقدمه ای بر پدیده موجدار شدن(Serging)...................................................................... 19

محدودیت های پدیده موج و صخره(Stonewall)........................................................... 23

روشهای مقابله با موجدار شدن(Anti Surge).................................................................. 25

تحلیلی بر پدیده سرج( Surge)............................................................................................. 28

منحنی انرژی پرتاب نسبت به جریان گاز............................................................................... 32

مکان هندسی (Locus)............................................................................................................ 33

نقطه عملکرد(Operatihg point)..................................................................................... 35

حد پدیده موج اندازی (Surge Limit).............................................................................. 37

مرز ایمنی موج اندازی (Surge Margin)........................................................................ 38

ضد پدیده موج اندازی(Anti Surge) ................................................................................ 41

تأثیر محفظه متصله بر روی نقطة سرج در کمپرسور.......................................................... 49

استفاده از نرم افزار ANSYS11 برای تحلیل پروانه کمپرسورهای گریز از مرکز... 57

منابع.................................................................................................................................................. 73


دانلود با لینک مستقیم


علل تخریب کمپرسورهای گریز از مرکز شرکت بهره برداری نفت و گاز گچساران