اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

اس فایل

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله ساختار اتم و مولکول

اختصاصی از اس فایل دانلود مقاله ساختار اتم و مولکول دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله ساختار اتم و مولکول


دانلود مقاله ساختار اتم و مولکول

دلایل تجربی بسیار زیادی وجود دارد که نشانه تجزیه پذیر بودن اتم است مثل الکتریسیته- پرتوهای کاتودی- مواد رادیواکتیو- الکترولیز

ذرات ریز اتمی: عبارتند از الکترون- ،پروتون+ و نوترونخنثی

       الکترون me= 1/6×10-28g

       پروتون mp=1/6×10-24g

       نوترون mp=mn

عدد اتمی(Z): بر تعداد پروتون های یک اتم عدد اتمی می گویند.

عدد جرمی(A): به مجموع پروتون ها و نوترون ها عدد جرمی می گویند.

ایزوتوپ: اتم های یک عنصر که عددهای اتمی یکسان و عدد جرمی متفاوتی دارند.

 Cl3717    cl3517

جرم اتمی: نسبت جرم اتم های هر عنصر به واحد کربنی

واحد کردن: واحد جرم اتمی =    amu  =    جرم اتم کربن 12

 

میانگین جرم اتمی:

M1a1+m2a2+…=میانگین جرم اتمی

=a فراوانی

37×0/25+35×0/75=35/5=میانگین جرم اتمی کلر

 

مدل های اتمی: مدل تامسون- مدل رادرفورد- مدل بور- مدل کوانتمی

طیف: اگر یک نور معمولی را از منشور عبور دهیم مجموعه ای از رنگهای مختلف از هم جدا می شود که به این مجمو عه ی رنگی طیف نوری گفته می شود. طیف بر دو دسته اند: پیوسته – خطی

 

دسته بندی دیگر طیف ها به صورت زیر است.

  • طیف جذبی 2) طیف نشری

شامل 39 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله ساختار اتم و مولکول

دانلود مقاله اتم

اختصاصی از اس فایل دانلود مقاله اتم دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله اتم


دانلود مقاله اتم

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:  2

 

 

 

 

مقدمه

از مدتها قبل ،انسان می داند که تمام مواد از ذرات بنیادی یا عناصر شیمیایی ساخته شده اند. از میان این مواد،مثلاً می توان از اکسیژن ،گوگرد ،و آهن نام برد .کوچکترین ذره آهن ،یک اتم آهن و کوچکترین ذره گوگرد ،یک اتم گوگرد نامیده می شود .
آهن خالص فقط دارای اتمهای آهن است و گوگرد خالصل نیز فقط اتمهای گوگرد دارد . اتمها جرمهای گوناگونی دارند .سبکترین آنها اتم هیدوژن است .
اتمهای آهن بسیار سنگینتر از هیدروژن و اتمهای "اورانیم" از اتمهای آهن سنگینترند ،یعنی جرمشان بیشتر ایت .واژه اتم ،از بان یونانی گرفته شده و معنای آن در واقع "ناکسستنی" یا "تقسیم ناپذیر" است .


دانلود با لینک مستقیم


دانلود مقاله اتم

دانلودمقاله مولکول و اکسیژن

اختصاصی از اس فایل دانلودمقاله مولکول و اکسیژن دانلود با لینک مستقیم و پر سرعت .

 

 



 

اتم اکسیژن فراوان ترین عنصر در پوسته زمین است و در اتمسفر و آب برای شکل‌های هوازی حیات مورد نیاز می باشد مخزن اکسیژن کره زمین نتیجه ساخته شدن آن از واکنش‌هایی مانند فتو سنتز است 37 EMOL و 1 EMOL=108 MOLES. فتوسنتز واکنشی است که در آن دی اکسیژن (2O‌) از آب آزاد می‌شود دی اکسیژن تقریبا بطور دائمی در تنفس استفاده می‌شود و بیشتر از آن جهت استفاده می‌شود که پذیرنده نهایی الکترون است. اتم اکسیژن در آنواع مولکولهای آلی بوسیله تنوعی از واکنش‌های آنزیمی (مانند اکسیژن ساز‌) و غیر آنزیمی ثابت می‌شود.
موجودات بی هوازی هر چند از عهده اثر مخالف اکسیژن بر می آیند. در غلظت بالا‌تر از اکسیژن اتمسفر، دی اکسیژن ممکن است (2O‌) بازدارنده یا غیر فعال کننده آنزیم معینی باشد و یا اینکه ممکن است با CO2 برای ثابت شدن بوسیله 1، 5 – بیس‌فسفات کربوکسیلاز اکسیژناز رقابت کند که این باعث می‌شود که ارزش انرژیتیک فتوسنتز افزایش یابد. بطور کلی اثر سمی اکسیژن به طور عمده توسط مشتقات واکنشی (واکنش پذیر) آن اعمال می‌شود، در حالیکه دی اکسیژن در حالت پایدار اتم نسبتا غیر قابل واکنش است و می تواند در حالت آرامش همراه مواد الی وجود داشته باشد اجباراتی جزئی از ساختار آنها گردد. این ویژگی توسط چرخش‌های موازی دو الکترون جفت نشده دی اکسیژن، که دارای یک سدانرژی برای واکنش اکسیژن با ترکیبات غیر رادیکال است (ممانعت چرخش‌) نشان داده می‌شود.
برای اینکه اکسیژن به طور شیمیایی واکنش پذیر باشد باید بطور فیزیکی یا شیمیایی فعال شود. فعالیت فیزیکی بطور عمده توسط انتقال انرژی تحریک از یک رنگیزه فعال شده با نور همانند کلروفیل تحریک شده به اکسیژن اتفاق می‌افتد با جذب انرژی کافی چرخش یک الکترون معکوس می‌شود. اولین حالت منفرد از اکسیژن (به صورت O2 یا 2 نشان داده می‌شود‌) یک نوع واکنش پذیر متداول است. این حالت اکسیژن قابلیت انتشار زیادی دارد و قادر به واکنش با ملکولهای الی است (که الکترونها معمولا جفت شده هستند‌) و به غشاهای فتوسنتزی آسیب می‌رسانند.
فعالیت شیمیایی مکانیزم دیگری برای ممانعت چرخش الکترون و فعال کردن است. این عمل توسط احیا یونی والنت (یک ظرفیتی‌)دی اکسیژن با افزایش الکترونهای یکی توسط دیگری آنجام می گیرد. چهار الکترون و چهار پروتون برای احیا کامل اکسیژن به آب نیاز است. همه سه حد واسط احیا یک ظرفیتی(univatent) مثلا سوپر اکسید O2o. پراکسید هیدروژن (H2o2) رادیکال هیدروکسیل OHo از نظر شیمیایی فعالند و از نظر فیزیولوژیکی سمی هستند این سمیت به وسیله نیمه عمرها ی کوتاه آنها قبل از واکنش با ترکیبات سلولی و در مقایسه با نیمه عمر دی‌اکسیژن انعکاس داده می‌شود، (بیشتر از 100 ثانیه جدول 1‌) نوع اکسیژن واکنشی که با یک ملکول الی برخورد می‌کند یک الکترون را از آن خارج می‌کند و در یک واکنش زنجیره ای به صورت رادیکالهای پراکسیل(Rooo) و آلکوکسیل (Roo) درآید.
سوپر اکسید اولین تولید احیا شده از حالت بنیادی اکسیژن است که این توانایی را دارد هم از اکسید شدن و هم از احیا شدن ایجاد شود این ماده با چند ماده تولیدی از واکنش‌های دیگر ممکن است واکنش دهد که این عمل بطور خود به خود و یا بوسیله آنزیم‌های جهش نیافته منجر به تولید H2o2 می‌شود.
پراکسید هیدروژن یک رادیکال آزاد نبوده اما بعنوان اکسید کننده و عامل احیا کننده در تعدادی از واکنش‌های درون سلولی شرکت می‌کند بر خلاف سوپر اکسید، H2o2 انتشار بیشتری از میان غشاها و بخش‌های کرده‌بندی شده سلول داشته و ممکن است مستقیما آنزیم‌های حساس را در غلظت کم غیر فعال کند مانند سوپر اکسید، H2o2 پایداری بیشتری دارد. بنابراین از دیگر آنواع آن اکسیژن‌های واکنش اثر سمی کمتری دارد تهدید عمده سوپر اکسید و H2o2 در توانایی آنها به تولید زیاد رادیکالهای هیدروکسیل واکنش‌دار می‌باشد.
رادیکال‌های هیدروکسیل از آنواع اکسید کننده قوی در سیستم بیولوژیکی بشمار می‌روند. این رادیکال ها بطور غیر ویژه ای با هیچ مولکول بیولوژیکی واکنش نمی دهند این موضوع به انتشار آن بر می‌گردد که انتشار آن در درون سلول به آندازه قطر 2 مولکول از جایگاه تولید آنها انجام می‌گیرد.
هیچ نوع تمیز کننده ای که بتواند OHo را جمع آوری کند شناخته نشده است. اگر چه پیشنهاد شده است که چندین متابولیت همانند اوره یا گلوکز در سیستم‌های جانوری جمع کننده OHo هستند جدیدا هم نقشی برای OHo در متابولیسم پلی ساکاریدهای دیواره سلولی پیشنهاد شده است نوع واکنش‌های مختلفی که در بالا شرح داده شده است به سبب تغییرات: 1- جلوگیری از آنزیم‌های حساس 2- کاهش کلروفیل یا بی رنگ شدن 3- پراکیداسیون لیپیدها می باشد: به دلیل یورش رادیکال‌های آزاد، H2o2 و اکسیژن منفرد به اسیدهای چرب غیر اشباع لیپیدهای هیدروپراکسید تولید می‌شود و در حضور مواد کاتالیزی رادیکال‌های الکوکسیل (alkoxyl) و پراکسیل (peroxyl) به زنجیره واکنش در غشا سلولی انتقال می یابند و لیپید‌های ساختاری و غشاهای سازمان یافته و بی عیب تغییر و تجزیه می شوند، بعلاوه تعدادی الدئید و هیدروکربن‌های تولید شده بوسیله پراکیداسیداسیون باعث اثر سمی در سیستم‌های جانوری می‌شود
4- حمله ناشی از عدم تشخیص بوسیله رادیکال ها به ملکولهای الی مانند DNA . تغیرات زیادی در اثر حمله OHo به DNA ایجاد می‌شود که شامل شکست رشته ها که ممکن است دوباره جفت شدن آنها را دچار مشکل کند و یا واکنش‌های متناوب پایه ای باشد. پروتئین‌هایی که د ر معرض OHo قرار می گیرند تغییرات بر جسته ای پیدا می کنند که شامل تغییر توالی آمینو اسیدهای ویژه، که شامل تغییر متوالی آمینو اسیدهای ویژه، قطعه قطعه شدن پلی پپتید، اجتماع و دناتوره شدن پروتئین‌ها و آمادگی آنها برای تجزیه می باشد.

 

منابع بیولوژیکی اکسیژن واکنش‌دار:
در همه جریان‌های متابولیکی طبیعی در موجودات هوازی آنواع اکسیژن واکنش‌دار ( ROS) تشکیل می‌شود در شکل 1 تعدادی از مسیرهای فیزیولوژیکی گیاه که تولید اکسیژن واکنش دار می کنند مورد بحث قرار می گیرند اگر چه تعدادی از رادیکال‌های اکسیژن که در اثر اشریشیا هوازی ساخته می شوند زودتر کشف شده‌اند در رشد هوازی E.coli رادیکال O2o در طول انتقال الکترون در غشا تولید می‌شود فقط 4% درصد از الکترونها انتشار یافتند و مکانیسمی نیاز است تا از تجمع سوپر اکسید جلوگیری کند از نمونه موتانهای E.coli غشا‌های تهیه شده و سطح سوپراکسید آندازه گیری شده که تهی از سوپراکسید دسیموتازبود sodA) (sodBچنین موتان‌هایی رشد کمی را نشان دادند و از طریق چندین موجود اگزوتروف ثابت گردید که soD (سوپر اکسید اسیموتاز‌) نقش حیاتی در کاهش سطح پایدار o2o به میزان دارد یکی از بیشترین آنزیم‌هایی که در سیستم E.coli به سوپر اکسید حساس می باشد آنزیم اکونیتاز می‌باشد که در چرخه TCA نقش دارد غیر فعال شدن اکونیتاز می‌باشد که در برگشت پذیری اکیداتیو بوسیله O2o آنجام می گیرد و پیشنهاد شده است که با ایجاد یک نقش تدافعی ‍‍‍[ ciruit breaking ] باعث تولید NADPH در راه کوتاهتر می‌شود.

 

تشکیل اکسیژن واکنش‌دار در کلروپلاست گیاهان:
کلرو پلاست‌ها منابع بزرگی از تشکیل اکسیژن واکنش دار در گیاهان هستند. در انرژی نوری زیاد کارایی آنها بالا رفته و ایجاد مواد احیاکننده همانند NADPH می‌کند. چندین مسیر یا جایگاه وابسته فعالیت اکسیژن در کلرو پلاست وجود دارد که در مواقعی به سمت تولید اکسیژن‌های واکنشی هدایت می‌شوند. اهمیت زیاد از این جهت است که سمتی از PSI احیاکننده است که یک الکترون ممکن است بوسیله کاریر (حامل‌) غشایی به o2 انتقال یابد (واکنشmehler ‌)، در عوض از جریان الکترون به سمت پائین در نهایت NADP+ احیا می‌شود (شکل 1‌) تحت وضعیت‌هایی که قابلیت استفاده پذیرنده‌های الکترون از PSI محدود می شوند به عنوان مثال وقتی که سیکل کالوین به آندازه کافی و با سرعت NADPH مصرف نمی کند سوپر اکسید در غشا شکل می‌گیرد.
در PH پائین سوپر اکسید خود به خود از انتشار زیاد H2O2 جلوگیری می‌کند، به طور دیگر سوپر اکسید ممکن است با پلاستو سیانین یا سیتوکروم F واکنش داده و آنها را احیا کند، نتیجه واسطه ای بودن سوپراکسید باعث می‌شود که سیکل الکترون در اطراف PSI جریان یابد این مکانیسم پیشنهاد میکند که تولید سوپر اکسید یک نقش تنظیم کنندگی دارد که با تغییر دادن یا چرخش بیش از حد الکترون د رهمان زمان مانع انتشار رادیکال‌ها به یک صرف از غشا می‌شود.
پراکسید هیدروژن از بیشترین تولیدات کلروپلاست است که به طور بی تناسبی از سوپر اکسید و بوسیله آنزیم SOD ایجاد می‌گردد، که دراثر از بین رفتن خود بخود بی‌ثبات‌تر می‌شود. از منابع دیگر تولید H2O2 تنفس نوری است که بوسیله فعالیت اکسیژنازی آنزیم 1، 5 ریبو لوز بیس فسفات کربوکسیلا زد راسترومای کلروپلاست شروع می‌شود و در نتیجه د رپراکسی زوم تولید H2O2 می‌شود (شکل 1‌).
تنفس نوری ممکن است یک مکانیسم محافظتی برای بازسازی پذیرنده الکترون باشد که با این عمل اجازه می دهد که جریان می‌دهد که جریان الکترونهای فتوسنتزی تحت وضعیت‌های تثبیت کم کربنی ادامه یابد.

 

در مقایسه با چرخه الکترون اطراف PSI، سیکل تنفس نوری باعث از هم پاشیدگی ATP و NADPH می‌شوند. یک مکانیسم مهم از تنظیم که باعث جفت شدن تثبیت کربن در استروما به جریان الکترون فتوسنتزی می‌شود. این است که وقتی انتقال دهنده‌های الکترون در واکنش‌های نوری اکسید می شوند آنزیم‌های سیکل کالوین بطور برگشت پذیری غیر فعال وقت انتقال دهنده‌ها احیا شدند. این آنزیم ها دوباره فعال می شوند چنین تنظیمی بوسیله واسطه‌هایی مانند تیورود کسین،PH استروما و دیگر فاکتورها آنجام می‌گیرد.
پراکسید هیدروژن از طریق اکسید کردن گروههای تیول باعث مختل شدن کار این مکانیسم‌های حفاظتی می شوند همچنین پراکسید هیدروژن باعث غیر فعال شدن آنزیم‌های چرخه کالوین بطور غیر بازگشت‌پذیر می‌شود.
بنابراین غلظت آن باید در کلروپلاست پایین نگه داشته شود همچنین آن ممکن است آنزیم SOD مس / روی غیر فعال کند. رادیکال‌های هیدروکسیل ممکن است در طی واکنش‌های کاتالیزی در تمام سلولهای زنده بوسیله تغییر یونهای آهن و مس وقتی که H2O2 و سوپر اکسید حضور دارند تشکیل شود:
1- واکنش Fenton که در نتیجه آن، OHo از H2O2 تولید می‌شود.

2-یون آهن غیرچرخه‌ای همانند یک احیا کننده فعال بوده و با اضافه شدن سوپر اکسید به واکنش 1 بصورت زیر ادامه می‌یابد.

3- حاصل جمع واکنش 1 و 2 که واکنش haber-weiss نامیده می‌شود.

SOD, O2o با هم یک منبع تمیز کننده مشترک ا زH2o2 از بین می رود، علاوه بر آن آنواع اکسیژن واکنش‌دار دیگری را نیز از بین می برند خطر اصلی پراکسید هیدروژن و سوپراکسید غیر مستقیم بوده و آن وقتی اتفاق می افتد که آنها اجازه پیدا می‌کنند که د رهمان جایگاه‌های سلولی تجمع یابند و متابولیسم آهن و مس د ر تماس با استرس اکسیداتیو هستند مطابق یک گزارش چالش آنگیز بوسیله yim و همکارانش (1990‌)، رادیکال‌های هیدروکسیل بوسیله آنزیمcu/zn SOD بصورت محلول آزاد می‌شود که خود با آن واکنش داده و تولید پراکسید هیدروژن می‌کند. اکسیژن منفرد وقتی در کلروپلاست شکل می‌گیرد کلروفیل برانگیخته از نور در حالت سه گانه با دی‌اکسیژن واکنش می دهد. دوباره وقتی که ATP و NADPH بوسیله واکنش‌های چرخه کالوین کمتر استفاده می شوند میزان آن زیادتر می‌شود تعدادی از فاکتورهای استرس که محدود کننده همانند سازی CO2 هستند ممکن است باعث افزایش این جریان ها شود (مانند بسته شدن روزنه ها‌). انرژی باقی مانده بر انگیخته از اینرو از طریق فلورسانس یا فروکش کردن کارتنوئیدها پراکنده می‌شود. بعلاوه اکسیژن منفرد ممکن است بوسیله پراکسیدازهای معین در گیاهان تولید شود.

 

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  66  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله مولکول و اکسیژن

دانلود پایان نامه رشته شیمی - مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج با فرمت ورد

اختصاصی از اس فایل دانلود پایان نامه رشته شیمی - مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج با فرمت ورد دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه رشته شیمی - مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج با فرمت ورد


دانلود پایان نامه رشته  شیمی - مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج با فرمت ورد

فصل اول

مقدمه

1-1- تئوری قفل و کلید

مفهوم برهم کنش مولکولی بسیار قدیمی بوده و بوسیله مؤسسات یونانی و ایتالیایی استفاده شده است. در نیمه دوم قرن نوزدهم، ظهور نظریه‌های مدرن در مورد این برهم کنش‌ها از میان آزمایش‌های واندروالس در مطالعاتش پیرامون برهم کنش‌های مابین اتمها در حالت گازی آغاز شد و در سال 1894، فیشر نظریه مشهور «قفل و کلید»اش را در مورد‌روش برهم کنش سوبسترا با آنزیم ارائه‌کرد.

براساس نظریه فوق، عمل خاص یک آنزیم با یک سوبسترا تنها می‌تواند با استفاده از تشبیه قفل به آنزیم و کلید به سوبسترا توضیح داده شود. فقط وقتی که کلید (سوبسترا) اندازه قفل باشد در درون سوراخ قفل (مکان فعال آنزیم) جای می‌گیرد. کلیدهای کوچکتر، کلیدهای بزرگتر یا کلیدهایی با دندانه‌های نامشابه (مولکولهای سوبسترا با شکل و اندازه نادرست) در داخل قفل (آنزیم) جای نخواهند گرفت (1). شکل 1-2 بخوبی این موضوع را نشان می دهد.

در سیستم‌های زیستی، کمپلکس‌های مولکولی بواسطه‌ تعداد زیادی از برهم کنش‌های غیر کووالانسی از قبیل پیوندهای هیدروژنی و پیوندهای یونی تشکیل می‌شوند. اگر چه این برهم کنشها به تنهایی در مقایسه با پیوندهای کووالانسی ضعیف می‌باشند، لیکن تاثیر همزمان این پیوندها اغلب منجر به تشکیل کمپلکس‌های پایدار می‌شود. برهم کنش‌های پیچیده مابین انواع مولکولها، شناخت مولکولها و توانایی تقلید از پیوندهای طبیعی، دانشمندان را برای مدت زمان طولانی مشغول کرده است. این رویداد منجر به تشکیل رشته جدیدی با عنوان شیمی تقلید زیستی شده است. اصطلاح تقلید زیستی به وضعی گفته می‌شود که در آن فرایندهای شیمیایی از یک فرایند بیوشیمیایی تقلید می‌کنند، تا اینکه ساختارها و مکانیزم سیستمهای زیستی شناخته شوند. دانشمندان در تلاش هستند که این دانش را به فنون سنتزی تبدیل کنند. یکی از این فنون سنتزی که در دهه اخیر مورد توجه واقع شده است، فن مولکول نگاری می‌باشد (1،2).

 1-2- تاریخچه مولکول نگاری

در جهان به کرات اتفاق افتاده که یک پدیده موفقیت آمیز شروع ناامید کننده ای داشته است و عرصه علم هم از این امر استثناء نبوده و نیست. یکی از این مسائل علمی که شروع خوبی نداشته، روش مولکول نگاری می‌باشد.

برای اولین بار مولکول نگاری در سال 1930 میلادی بوسیله پولیاکف در بدست آوردن افزودنی های گوناگون در یک ماتریس سیلیکا مورد استفاده قرار گرفت. در دهه 1940 میلادی لینوس پائولینگ (3) فرض کرد فرایندی شبیه مولکول نگاری مسئول انتخاب پادتن ها برای آنتی ژنهای مربوط شان می باشند (شکل 1-3). پائولینگ برای توجیه توانایی شگفت‌انگیز سیستم ایمنی بدن انسان در تولید پادتن‌های بسیار متفاوت، فرضیه‌ای را ارائه داد. برطبق این فرضیه بدن انسان واحدهای ساختمانی سریع‌العملی را در اختیار دارد که به محض حضور مولکول غیر خودی در بدن، این واحدها، مولکول غیر خودی (مهاجم) را محاصره کرده و با گروههای عاملی مناسب خود با آن برهم کنش می‌دهند و سپس در همان وضعیت به هم متصل شده و یک قالب مولکولی را برای مولکول مهاجم به وجود می‌آورند. تئوری فوق توسط فرانک دیکی شاگرد پائولینگ، با انجام آزمایش هایی که جذب ویژه را برای چندین رنگ متفاوت در سیلیکا نشان می داد، تائید شد. امروزه مشخص شده است که پادتن ها بر اساس نظریه اختصاصی بودن پاسخ ایمنی تولید می شوند. بر اساس این نظریه، از برخورد هر یاخته با آنتی ژن مربوط، آن یاخته تکثیر می یابد و به مجموعه ای از یاخته های یکسان تبدیل می شود که فعالیت مشابهی را نشان می دهند، لذا نظریه تولید پادتن انعطاف پذیر در پاسخ به یک آنتی ژن اشتباه می باشد.

ولی همین فرضیه اساس یک روش جالب را در جداسازی بنیان نهاد که امروزه به نام روش مولکول نگاری معروف است.

در این قسمت به طور مختصر در باره تاریخچه روش های مختلف مولکول نگاری بحث خواهیم کرد.

 1-3- روش های مختلف مولکول نگاری

1-3-1- منقوش پذیری کووالانسی

Wulff و همکارش، سنتز اولین گونه منقوش پذیر کووالانسی را در سال 1997 گزارش (4) کرده اند (شکل 1-4). آنها گونه مزدوج کووالانسی P– وینیل بنزوبرونیک اسید با 4- نیتروفنیل –αD مانوپیرانوسید  به نسبت 2:1 ( مولکول الگو) سنتز نموده و عمل کوپلیمریزاسیون این محصول، با متیل متااکریلات و اتیلن دی متااکریلات ( بعنوان اتصال دهنده های عرضی) صورت گرفت. بعد از پلیمریزاسیون، برونیک اسید استر موجود در پلیمر شکافته شده و 4 نیتروفنیل- α-D مانوپیرانوسید از پلیمر منتقل می شود. دقیقا همان طور که می خواستند، پلیمر حاصل قویاً و به طور گزینش پذیر با این قند پیوند می دهد . پیکر بندی دو گروه برونیک اسید در پلیمر موجود ثابت نگه داشته شده و ساختار مولکول الگو حفظ می شود. با روش مشابهی، Shea یک گونه مزدوج کتال بین گروه کربونیل مولکول الگو وگروه 1و3-دیول مونومر عاملی، سنتز نموده و این گونه مزدوج کووالانسی را برای مولکول نگاری به کار برد (5).

1-3-2- منقوش پذیری غیر کووالانسی

Mosbach و همکارانش نشان دادند که پیوند کووالانسی بین مونومر عاملی و مولکول الگو الزاماً برای مولکول نگاری لازم نیستند. حتی بر هم کنش های غیر کووالانسی بین آنها هم به مقدار کافی مفیدند (6و7). با مخلوط کردن گونه ها با همدیگر، اتصال غیر کووالانسی خیلی سریع تشکیل شده و مولکول نگاری به نحو مطلوبی انجام می شود. برای مثال، برهمکنش حاصل در تشکیل کمپلکس بین متااکریلیک اسید ( بعنوان مونومر عاملی ) با داروی تئوفیلین ( مولکول الگو) از نوع الکتروستاتیک و پیوند هیدروژنی می باشد ( شکل 1-5).

همین استراتژی برای مولکول نگاری دارو های مختلف، حشره کش ها و دیگر مواد شیمیایی که از نقطه نظر کاربردی مهم هستند، موفق بوده است. بسیاری از کارکنان آزمایشگاهی، زمانی که دیدند که روش ها آنقدر ساده هستند، شگفت زده شدند. آنها خیلی زود متقاعد شدند که این روش به طور خوشایندی برای گستره وسیعی از مولکولها به کار رود و شروع به استفاده از این روش در آزمایشگاههای نمودند.

 1-3-3- هیبریداسیون منقوش پذیری کووالانسی و منقوش پذیری غیر کووالانسی

این روش مزایای منقوش پذیری کووالانسی ( طبیعت روشن و واضح) و هم مزایای منقوش پذیری غیر کووالانسی ( پیوند سریع مولکول الگو ) را داراست (8). اتصال اولیه مولکول الگو با مونومر عاملی از نوع کووالانسی بوده ولی بعد از انتقال مولکول الگو از پلیمر، جذب مجدد مولکول الگو و اتصال آن با گروههای عاملی مونومر از طریق برهم کنش های غیر کووالانسی صورت می گیرد ( شکل 1-6). یکی از نقاط ضعف منقوش پذیری کووالانسی، اتصال آهسته اتصال و انتقال مولکول الگو از پلیمراست.

امروزه از روش مولکول نگاری به صورت گسترده برای قرار دادن مولکول های هدف در سایت های مورد نظر استفاده می شود.

فصل دوم

 اهمیت مولکولهای پذیرنده درعلم و تکنولوژی پیشرفته

2-1-مقدمه

ما می دانیم در گازها ومایعات (نه جامدات) بیشتر مولکولها به طور تصادفی حرکت می کنند. هیچ مولکولی با مولکول اطرافش ارتباطی نداشته و هر طور که می خواهد رفتار می کند. کمپلکس های بین مولکولی فقط از طریق برخوردهای تصادفی به وجود آمده و عمر این کمپلکس ها بسیار ناچیز است و همچنین غلظت آنها در مایعات (یا گازها) تقریبا برابر صفر است. به هر حال، بعضی از مولکولها (مولکولهای پذیرنده) دقیقا بین یک مولکول و مولکول دیگر تفاوت قائل می شوند. آنها به صورت گزینشی جفت مولکولی خود را از میان تعدادی مولکول موجود در سیستم انتخاب میکنند و یک کمپلکس غیرکووالانسی با این مولکول می سازند. این کمپلکس ها به اندازه کافی پایدار بوده و غلظت تعادلی آنها قابل توجه است. دراینجا تمام مولکولها به جز مولکول جفت کاملا کنارگذاشته میشوند، درست همان طور که ما به سادگی دوستمان را حتی در شلوغی ورودی ایستگاه پیدا می کنیم و با او به رستوران میرویم. درکمپلکس های غیر کووالانسی همانند واکنش های آنزیمی, واکنش با حضور کاتالیزور اتفاق می افتد. این قدرت تشخیص میان مولکولها تشخیص مولکولی نامیده می شود.

در علم وتکنولوژی امروزی، اهمیت پذیرنده ها و تشخیص مولکولی به سرعت رشد کرده است. این رشد اساسا به این خاطر است که یک مولکول در حال حاضر یک واحد عملگر بوده و فقط نقش خود را ایفا میکند. برای ایجاد سیستمهای رضایت بخش تحت این شرایط، باید تعدادی مولکول را در شرایطی از پیش تعیین شده کنار هم بگذاریم و اجازه دهیم هر کدام کار خودش را انجام دهد. البته در اینجا همه مولکولها باید بدانند که مولکولهای مجاور آنها چه هستند، چه خصوصیات فیزیکوشیمیایی دارند و هر کدام از این مولکولها در هر لحظه چه می کنند. اخیرا روش مولکول نگاری برای فراهم آوردن پذیرنده های چند کاره که موثر و اقتصادی هستند توسعه یافته است. به طور کلی حرکات مولکولی در یک ساختار پلیمری ساکن شده و به همین دلیل آنها به طرز مطلوبی تثبیت شده اند. این شیوه، منحصر به فرد و چالش برانگیز است و در حال حاضر پیش بینی حوزه کاربردهای آن مشکل است. در این فصل پیرامون پذیرنده های طبیعی و مصنوعی بحث خواهیم کرد.

 2-2- پذیرنده های طبیعی

مولکولها و سلولهای زیادی در بدن ما وجود دارد و همه آنها به نحو بسیار منطقی با هم همکاری می کنند. بدون این همکاری و درک متقابل، ما زنده نمی مانیم. بنابراین تشخیص مولکولی برای وجود زندگی، حیاتی است. برای مثال، پذیرنده های روی سطح غشای سلولی، هورمونها را به هم پیوند میدهند و مسئول ارتباطات بین سلولی هستند. زمانی که پذیرنده ها، هورمونها را پیوند می دهند، ساختارشان تغییر میکند، پیام هورمون (برای مثال: کمبود گلوگز در بدن) از طریق این تغییر ساختاری به سلول منتقل می شود. حال که سلول می داند در آن لحظه بدن چه چیزی لازم دارد، عکس العمل زیستی مربوط را انجام داده تا به این نیاز به طور مناسب پاسخ دهد. در مثال بالا، گلیکوژن هیدرولیز شده وگلوکز برای بدن تامین می گردد. مهمترین عامل در این سیستمها این است که یک پذیرنده فقط و فقط یک هورمون مشخص را قبول میکند و هیچ برهم کنش خاصی با دیگر هورمونها ندارد. علاوه براین، برهم کنش هورمون-پذیرنده به شدت قوی است. بنابراین حتی مقدار کمی از هورمون هم می تواند اطلاعات را دقیقا به سلول هدف انتقال دهد، بدون آنکه ارتباط بین سلولها را قطع کند. به عبارت دیگر، اتصال اختصاصی پادتن برای پاسخ مصون بسیار مهم است. پروتئین ها در بدن ما مانند پلیس گشت می زنند تا مواد خارجی (آنتی ژنها )که وارد بدن میشوند را گرفته و به لیزوزوم (سلول اورگانیل) تحویل دهند تا در آنجا از بین برود تا بدن با موفقیت محافظت شود. همانطور که ما انتظار داریم، تمایز قائل شدن یک پادتن بین آنتی ژن هدف (و همچنین مواد خارجی و درونی بدن) باید کاملا مشخص باشد. از طرفی، آنزیمها هم خاصیت واکنش دهندگی زیادی از خود نشان می دهند، هر کدام از آنها منحصرا یک سوبسترای مشخص را انتخاب می کند و آن را به محصولی از پیش تعیین شده تبدیل می کند و همه ترکیبات دیگر سیستم دست نخورده باقی می مانند. آنزیم دیگر، سوبسترای خاص و ماموریت دیگری را انتخاب می کند. علاوه بر این فقط سوبسترای مشخص به صورت موثر به محصول مورد نظر تبدیل می شود، زیرا اسید آمینه های باقی مانده از آنزیم که از لحاظ کاتالیزوری فعال هستند و در مجاورت سایت های اتصال سوبسترا قرار گرفته، فقط برای این انتقال و متناسب با آن آماده شده اند. اطلاعات مفصل در مورد تشخیص مولکولی در طبیعت هم اکنون با بلور شناسی اشعه X و NMR مهیاست (1).

سایت های اتصال سوبسترا- آنزیم، شکافها یا بسته های غیر قطبی بوده که از باقیمانده تعدادی اسید آمینه تشکیل شده اند. گروههای عاملی فراوانی (OH ,NH2– ایمیدازول شاخه اصلی گروههای آمیدی و موارد دیگر ) وجود دارند که دقیقا برای واکنش با گروههای عاملی یک سوبسترای خاص در آنجا قرار گرفته اند. برای مثال یون آمونیوم یک آنزیم بر هم کنش کلمبی با یون کربوکسیلات با بار منفی، ازسوبسترای مخصوص انجام داده و یک پیوند هیدروژنی بین OH باقیمانده آنزیم و سوبسترا تشکیل می شود. تمام این برهم کنش ها به طور رضایت بخش و با هم، فقط برای سوبسترای خاص عمل میکنند و یک کمپلکس غیر کووالانسی پایدار را تشکیل می دهند.


دانلود با لینک مستقیم


دانلود پایان نامه رشته شیمی - مولکول نگاری پلیمری سنتز و کاربرد آن در استخراج با فرمت ورد